Advertisement

Journal of Central South University

, Volume 26, Issue 1, pp 132–145 | Cite as

Effects of basicity and temperature on mineralogy and reduction behaviors of high-chromium vanadium-titanium magnetite sinters

  • Wei-dong Tang (汤卫东)
  • Song-tao Yang (杨松陶)
  • Li-heng Zhang (张立恒)
  • Zhuang Huang (黄壮)
  • He Yang (杨合)
  • Xiang-xin Xue (薛向欣)Email author
Article
  • 14 Downloads

Abstract

The effects of basicity and temperature on the reduction process of Hongge high-chromium vanadium-titanium magnetite (HCVTM) sinter were investigated in this work. The main characterization methods of X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscope (SEM), and metallographic microscope were employed in this study. In this work, the reduction of HCVTM sinter with different temperature and basicity were experimented. The Fe, FeO, and TiO in reductive samples increase with increasing basicity and temperatures. The increase of basicity and temperature is favorable to the reduction of HCVTM sinter. The Fe phase has out-migration tendency to the surface of sinter while the perovskite and silicate phases have in-migration tendency to the inside of sinter. The reduction degradation index (RDI) decreases while the reduction index (RI) increases with increasing basicity. The RI increases from 67.14% to 82.09% with increasing temperature from 1073 K to 1373 K.

Key words

basicity high-chromium vanadium-titanium magnetite sintering pot test mineralogy reduction behavior 

碱度和温度对高铬型钒钛烧结矿矿物学和还原行为的影响

摘要

在本工作中,研究了碱度和温度对红格高铬钒钛烧结矿还原过程的影响。本研究主要采用了 XRF,XRD,SEM 和金相显微镜的表征方法。在本文中,研究了不同温度和碱度对高铬钒钛烧结矿 的还原行为。还原烧结矿中的Fe,FeO 和TiO 含量随着碱度和温度的升高而增加。结果表明升高碱度 和温度有利于高铬钒钛烧结矿的还原。其中,Fe 相有向烧结矿表面迁移的趋势,而钙钛矿和硅酸盐相 有向烧结矿内部迁移的趋势。随着碱度的增加,低温还原粉化指数(RDI)降低,而还原指数(RI)增加。 当温度从1073 K 升高到1373 K 时,RI 从67.14%增加到82.09%。

关键词

碱度 高铬型钒钛磁铁矿 烧结杯实验 矿物学 还原行为 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    CHENG Gong-jin, GAO Zi-xian, LV Meng-yang, YANG He, XUE Xiang-xin. Coal-based reduction and magnetic separation behavior of low-grade vanadium-titanium magnetite pellets [J]. Minerals, 2017, 7(6): 86–99.CrossRefGoogle Scholar
  2. [2]
    LU Chang-yuan, ZOU Xing-li, LU Xiong-gang, XIE Xue-liang, ZHENG Kai, XIAO Wei, CHENG Hong-wei, LI Guang-shi. Reductive kinetics of panzhihua ilmenite with hydrogen [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(12): 3266–3273.CrossRefGoogle Scholar
  3. [3]
    CHENG Gong-jin, XUE Xiang-xin, GAO Zi-xian, JIANG Tao, YANG He, DUAN Pei-ning. Effect of Cr2O3 on the reduction and smelting mechanism of high-chromium vanadium-titanium magnetite pellets [J]. ISIJ International, 2016, 56(11): 1938–1947.CrossRefGoogle Scholar
  4. [4]
    LI Wei, FU Gui-qin, CHU Man-sheng, ZHU Miao-yong. Non-isothermal reduction behavior and mechanism of hongge vanadium titanomagnetite pellet with simulated shaft furnace gases [J]. ISIJ International, 2018, 58(3): 415–421.CrossRefGoogle Scholar
  5. [5]
    CHENG Gong-jin, GAO Zi-xian, YANG He, XUE Xiang-xin. Effect of calcium oxide on the crushing strength, reduction, and smelting performance of high-chromium vanadium–titanium magnetite pellets [J]. Metals, 2017, 7(6): 181.CrossRefGoogle Scholar
  6. [6]
    CHENG Gong-jin, XUE Xiang-xin, JIANG Tao, DUAN Pei-ning. Effect of TiO2 on the crushing strength and smelting mechanism of high-chromium vanadium-titanium magnetite pellets [J]. Metallurgical and Materials Transactions B, 2016, 47(3): 1713–1726.CrossRefGoogle Scholar
  7. [7]
    YANG Song-tao, TANG Wei-dong, ZHOU Mi, JIANG Tao, XUE Xiang-xin, ZHANG Wei-jun. Effects of dolomite on mineral compositions and metallurgical properties of chromium-bearing vanadium-titanium magnetite sinter [J]. Minerals, 2017, 7(11): 210–224.CrossRefGoogle Scholar
  8. [8]
    YANG Song-tao, ZHOU Mi, TANG Wei-dong, JIANG Tao, XUE Xiang-xin, ZHANG Wei-jun. Influence of coke ratio on the sintering behavior of high-chromium vanadium-titanium magnetite [J]. Minerals, 2017, 7(7): 107–120.CrossRefGoogle Scholar
  9. [9]
    YANG Song-tao, ZHOU Mi, JIANG Tao, XUE Xiang-xin. Isothermal reduction kinetics and mineral phase of chromium-bearing vanadium–titanium sinter reduced with CO gas at 873–1273 K [J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(2): 145–152.CrossRefGoogle Scholar
  10. [10]
    CHENG Gong-jin, GAO Zi-xian, YANG He, XUE Xiang-xin. Effect of diboron trioxide on the crushing strength and smelting mechanism of high-chromium vanadium-titanium magnetite pellets [J]. International Journal of Minerals, Metallurgy, and Materials, 2017, 24(11): 1228–1240.CrossRefGoogle Scholar
  11. [11]
    GAN Min, JI Zhi-yun, FAN Xiao-hui, LV Wei, ZHENG Ru-yue, CHEN Xu-ling, LIU Shu, JIANG Tao. Preparing high-strength titanium pellets for ironmaking as furnace protector: Optimum route for ilmenite oxidation and consolidation [J]. Powder Technology, 2018, 333: 385–393.CrossRefGoogle Scholar
  12. [12]
    GAN Min, JI Zhi-yun, FAN Xiao-hui, CHEN Xu-ling, ZHENG Ru-yue, GAO Lu, WANG Guo-jiang, JIANG Tao. Value-added utilization of waste silica powder into high-quality chromite pellets preparation process [J]. Powder Technology, 2018, 328: 122–129.CrossRefGoogle Scholar
  13. [13]
    GAN min, FAN Xiao-hui, CHEN Xu-ling, JI Zhi-yun. High temperature mineralization behavior of mixtures during iron ore sintering and optimizing methods [J]. ISIJ international, 2015, 55(4): 742–750.CrossRefGoogle Scholar
  14. [14]
    TANG Wei-dong, YANG Song-tao, CHENG Gong-jin, GAO Zi-xian, YANG He, XUE Xiang-xin. Effect of TiO2 on the sintering behavior of chromium-bearing vanadium- titanium magnetite [J]. Minerals, 2018, 8(7): 263–275.CrossRefGoogle Scholar
  15. [15]
    YANG Song-tao, ZHOU Mi, JIANG Tao, XUE Xiang-xin, ZHANG Wei-jun. Effect of basicity on sintering behavior of low-titanium vanadium–titanium magnetite [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(6): 2087–2094.CrossRefGoogle Scholar
  16. [16]
    JIANG Tao, WANG Shuai, GUO Yu-feng, CHEN Feng, ZHENG Fu-qiang. Effects of basicity and MgO in slag on the behaviors of smelting vanadium titanomagnetite in the direct reduction-electric furnace process [J]. Metals, 2016, 6(5): 107–121.CrossRefGoogle Scholar
  17. [17]
    PIMENTA H P, SESHADRI V. Characterisation of structure of iron ore sinter and its behaviour during reduction at low temperatures [J]. Ironmaking & Steelmaking, 2002, 29(3): 169–174.CrossRefGoogle Scholar
  18. [18]
    PIMENTA H P, SESHADRI V. Influence of Al2O3 and TiO2 degradation behaviour of sinter and hematite at low temperatures on reduction [J]. Ironmaking & Steelmaking, 2002, 29(3): 175–179.CrossRefGoogle Scholar
  19. [19]
    MATSUNO F, HARADA T. Changes of mineral phases during the sintering of iron ore-lime stone systems [J]. Transactions of the Iron and Steel Institute of Japan, 1981, 21(5): 318–325.CrossRefGoogle Scholar
  20. [20]
    LOO C E, LEUNG W. Factors Influencing the bonding phase structure of iron ore sinters [J]. ISIJ International, 2003, 43(9): 1393–1402.CrossRefGoogle Scholar
  21. [21]
    HSIEH L H, JA W. Effect of raw material composition on the mineral phases in lime-fluxed iron ore sinter [J]. ISIJ International, 1993, 33(4): 462–473.CrossRefGoogle Scholar
  22. [22]
    FU Wei-guo, WEN Yong-cai, XIE Hong-en. Development of intensified technologies of vanadium-bearing titanomagnetite smelting [J]. Journal of Iron and Steel Research, International, 2011, 18(4): 7–18.CrossRefGoogle Scholar
  23. [23]
    UMADEVI T, NELSON K, MAHAPATRA P C, PRABHU M, RANJAN M. Influence of magnesia on iron ore sinter properties and productivity [J]. Ironmaking & Steelmaking, 2009, 36(7): 515–520.CrossRefGoogle Scholar
  24. [24]
    ABDEL HALIM K S, BAHGAT M, El-Kelesh H A. Metallic iron whisker formation and growth during iron oxide reduction: basicity effect [J]. Ironmaking & Steelmaking, 2009, 36(8): 631–640.CrossRefGoogle Scholar
  25. [25]
    EL-GEASSY A A, NASR M I, KHEDR M H, ABDEL-HALIM S. Reduction behaviour of iron ore fluxed pellets under load at 1023–1273 K [J]. ISIJ International, 2004, 44(3): 462–469.CrossRefGoogle Scholar
  26. [26]
    LV Xue-wei, BAI Cheng-guang, HE Sheng-ping, HUANG Qing-yun. Mineral change of Philippine and Indonesia nickel lateritic ore during sintering and mineralogy of their sinter [J]. ISIJ International, 2010, 50(3): 380–385.CrossRefGoogle Scholar
  27. [27]
    TANG Jue, CHU Man-sheng, XUE Xiang-xin. Optimized use of MgO flux in the agglomeration of high-chromium vanadium-titanium magnetite [J]. International Journal of Minerals, Metallurgy, and Materials, 2015, 22(4): 371–380.CrossRefGoogle Scholar
  28. [28]
    ANDERSSON S, COLLEN B, KUYLENSTIERNA U, MAGNELI A. Phase analysis studies on the titanium-oxygen system [J]. Acta Chemica Scandinavica, 1957, 11(10): 1641–1652.CrossRefGoogle Scholar
  29. [29]
    SCHLENDER P, ADAM A E W. Combined carboreduction–iodination reaction of TiO2 and FeTiO3 as the basic step toward a shortened titanium production process [J]. Industrial & Engineering Chemistry Research, 2017, 56(23): 6572–6578.CrossRefGoogle Scholar
  30. [30]
    NECHKIN G A, KOBELEV V A, CHERNAVIN A Y, CHERNAVIN D A. Effect of oxides of magnesium and manganese and the basicity of the iron-ore-bearing materials on the ability of the smelting products to filter through the coke column in blast furnaces [J]. Metallurgist, 2016, 59(11, 12): 1035–1039.CrossRefGoogle Scholar
  31. [31]
    CHANADEE T. Experimental studies on self-propagating high-temperature synthesis of Si-SiC composite from reactants of SiO2 derived from corn cob ash/C/Mg [J]. Journal of the Australian Ceramic Society, 2017, 53(1): 245–252.CrossRefGoogle Scholar
  32. [32]
    MOUSA E A. Effect of basicity on wüstite sinter reducibility under simulated blast furnace conditions [J]. Ironmaking & Steelmaking, 2013, 41(6): 418–429.CrossRefGoogle Scholar
  33. [33]
    BRISTOW N J, LOO C E. Sintering properties of iron ore mixes containing titanium [J]. ISIJ international, 1992, 32(7): 819–828.CrossRefGoogle Scholar
  34. [34]
    CLOUT J M F, MANUEL J R. Fundamental investigations of differences in bonding mechanisms in iron ore sinter formed from magnetite concentrates and hematite ores [J]. Powder Technology, 2003, 130(1–3): 393–399.CrossRefGoogle Scholar
  35. [35]
    PANIGRAHY S, VERSTRAETEN P, DILEWIJNS J. Influence of MgO addition on mineralogy of iron ore sinter [J]. Metallurgical Transactions B, 1984, 15(1): 23–32.CrossRefGoogle Scholar
  36. [36]
    MOUSA E, SENK D, BABICH A, GUGENAU H W. Influence of nut coke on iron ore sinter reducibility under simulated blast furnace conditions [J]. Ironmaking & Steelmaking, 2010, 37(3): 219–228.CrossRefGoogle Scholar
  37. [37]
    HESSIEN M, KASHIWAYA Y, ISHII K, NASR M I. Sintering and heating reduction processes of alumina containing iron ore samples [J]. Ironmaking & Steelmaking, 2008, 35(3): 191–204.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wei-dong Tang (汤卫东)
    • 1
  • Song-tao Yang (杨松陶)
    • 1
    • 2
  • Li-heng Zhang (张立恒)
    • 1
  • Zhuang Huang (黄壮)
    • 1
  • He Yang (杨合)
    • 1
  • Xiang-xin Xue (薛向欣)
    • 1
    Email author
  1. 1.School of MetallurgyNortheastern UniversityShenyangChina
  2. 2.School of Materials and MetallurgyUniversity of Science and Technology LiaoningAnshanChina

Personalised recommendations