Journal of Central South University

, Volume 26, Issue 1, pp 88–97 | Cite as

Tribological and flame retardant modification of polyamide-6 composite

  • Yi-lan You (游一兰)
  • Chen-ming Liu (刘晨明)
  • Du-xin Li (李笃信)Email author
  • Shi-jun Liu (刘士军)
  • Guo-wen He (贺国文)


A series of wear and flame resistant polyamide 6 (PA6) composites were prepared using glass fiber (GF) and talc (T) as reinforcer, polytetrafluoroethylene (PTFE) and graphite (Gr) as solid lubricants, red phosphorus (RP) and zinc borate (ZB) as flame retardant. The tribological property, mechanical property, flame retardant property and the flame retardant mechanism were investigated. The tests show that the formula of the wear resistant PA6 composite (WRPA 6) is PA6/GF/T/PTFE/Gr in the ratio of 100/15/5/10/5 by mass. Because this composite exhibits the lowest friction coefficient (0.1429) and no wear mass loss, the introduction of RP and ZB can increase the flame resistance of WRPA6, and the synergistic effect of RP and ZB is obtained. Detailedly, the composite with 4 parts of ZB and 12 parts of RP shows the best flame retardant property, achieving the highest limiting oxygen index (LOI) (30.2 vol%) and a UL94 V-0 rating, and the flame retardant mechanisms may be gas phase along with condense phase mechanism.

Key words

wear-resistant flame retardant polyamide-6 composite 

酰胺6 的摩擦与阻燃性能改性研究


采用玻璃纤维(GF)、滑石粉(T)为增强体,聚四氟乙烯(PTFE)和石墨(Gr)为固体润滑 剂,红磷(RP)和硼酸锌(ZB)为阻燃剂制备了一系列耐磨阻燃的聚酰胺6(PA6)复合材料。研究 了复合材料的摩擦磨损性能、力学性能、阻燃性能及阻燃机理。结果表明,耐磨材料(WRPA6)配方 是质量比为100/15/10/5 的PA6/GF/T/PTFE/Gr 复合材料,该材料的摩擦因数为0.1429,且没有检测到 质量损失。RP 和ZB 可以提高WRPA6 的阻燃性能,RP 和ZB 有协同作用。当WRPA6 含有4 份ZB 和12 份RP 时达到最大极限氧指数30.2 vol%和UL94 V-0 级,阻燃机理为气相阻燃和凝聚相阻燃。


耐磨性 阻燃 PA6 复合材料 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ALAJMI M, SHALWAN A. Correlation between mechanical properties with specific wear rate and the coefficient of friction of graphite/epoxy composites [J]. Materials, 2015, 8(7): 4162–4175.Google Scholar
  2. [2]
    SHEN J T, TOP M, PEI Y T, JTMD Hosson. Wear and friction performance of PTFE filled epoxy composites with a high concentration of SiO2 particles [J]. Wear, 2014, 322–323: 171–180.Google Scholar
  3. [3]
    YOU Yi-lan, LI Du-xin, SI Gao-jie, DENG Xin. Investigation of the influence of solid lubricants on the tribological properties of polyamide 6 nanocomposite [J]. Wear, 2014, 311(1, 2): 57–64.Google Scholar
  4. [4]
    ZALAZNIK M, KALIN M, NOVAK S, JAKSA G. Effect of the type, size and concentration of solid lubricants on the tribological properties of the polymer PEEK [J]. Wear, 2016, 364–365: 31–39.Google Scholar
  5. [5]
    YOU Yi-lan, LI Du-xin, DENG Xin, LI Wen-juan, XIE Ying. Effect of solid lubricants on tribological behavior of glass fiber reinforced polyamide 6 [J]. Polymer Composites, 2013, 34: 1783–1793.Google Scholar
  6. [6]
    CAO W H, GONG J, YANG D Y, GAO Gui, WANG Hong-gang, REN Jun-fang, CHEN Sheng-sheng. Tribological behavior and energy dissipation characteristics of nano-Al2O3-reinforced PTFE-PPS composites in sliding system [J]. Journal of Central South University, 2017, 24(9): 2001–2009.Google Scholar
  7. [7]
    SUN L H, YANG Z G, LI X H. Mechanical and tribological properties of polyoxymethylene modified with nanoparticles and solid lubricants [J]. Polymer Engineering Science, 2008, 48: 1824–1832.Google Scholar
  8. [8]
    SCHROEDER R, TORRES F W, BINDE C, KLEIN A N, MELLO JDBD. Failure mode in sliding wear of PEEK based composites [J]. Wear, 2013, 301(1, 2): 717–726.Google Scholar
  9. [9]
    HASHMI S A R, DWIVEDI U K, CHAND N. Friction and sliding wear of UHMWPE modified cotton fibre reinforced polyester composites [J]. Tribology Letters, 2006, 21: 79–87.Google Scholar
  10. [10]
    ZHANG Z, BREIDT C, CHANG L, HAUPERT F, FRIEDRICH K. Enhancement of the wear resistance of epoxy: short carbon fibre, graphite, PTFE and nano-TiO2 [J]. Composites Part A Applied Science & Manufacturing, 2004, 35: 1385–1392.Google Scholar
  11. [11]
    BIJWE J, SHARMA S, SHARMA M, PARIDA T, TRIVEDI P. Exploration of potential of solid lubricants and short fibers in Polyetherketone (PEK) composites [J]. Wear, 2013, 301: 810–819.Google Scholar
  12. [12]
    PERRET B, PAWLOWSKI K H, SCHARTEL B. Fire retardancy mechanisms of arylphosphates in polycarbonate (PC) and PC/acrylonitrile-butadiene-styrene [J]. Journal of Thermal Analysis & Calorimetry, 2009, 97(3): 949–958.Google Scholar
  13. [13]
    SHEN K K, KOCHESFAHANI S, JOUFFRET F. Zinc borates as multifunctional polymer additives [J]. Polymers for Advanced Technologies, 2010, 19(6): 469–474.Google Scholar
  14. [14]
    TANG S, QIAN L J, QIU Y, SUN N. The effect of morphology on the flame-retardant behaviors of melamine cyanurate in PA6 composites [J]. Journal of Applied Polymer Science, 2014, 131(15): 338–347.Google Scholar
  15. [15]
    CHOI Y S, CHOI S K, MOON S C, JO B W. Halogen-free flame retarding NBR/GTR foams [J]. Journal of Industrial & Engineering Chemistry, 2008, 14(3): 387–395.Google Scholar
  16. [16]
    SAHYOUN J, BOUNOR-LEGARE V, FERRY L, SONNIER R, BONHOMME A. Influence of organophosphorous silica precursor on the thermal and fire behaviour of a PA66/PA6 copolymer [J]. Polymer Degradation & Stability, 2015, 115: 117–128.Google Scholar
  17. [17]
    LI J, CHEN X, WANG Y, SHI Y, SHANG J. Burning and radiance properties of red phosphorus in magnesium/ PTFE/viton (MTV)-based compositions [J]. Infrared Physics & Technology, 2017, 85: 109–113.Google Scholar
  18. [18]
    MOSTASHARI S M. The superiority of red phosphorus over polymetaphosphate as flame-retardants on cellulosic substrates [J]. Cellulose Chemistry & Technology, 2009, 43(4): 199–204.Google Scholar
  19. [19]
    LI L, QIAN Y, JIAO C M. Influence of red phosphorus on the flame-retardant properties of ethylene vinyl acetate/ layered double hydroxides composites [J]. Advanced Materials Research, 2012, 21(9): 557–568.Google Scholar
  20. [20]
    SCHARTEL B, KUNZE R, NEUBERT D. Red phosphoruscontrolled decomposition for fire retardant PA 66 [J]. Journal of Applied Polymer Science, 2001, 83(10): 2060–2071.Google Scholar
  21. [21]
    NING Y, GUO S. Flame-retardant and smoke-suppressant properties of zinc borate and aluminum trihydrate-filled rigid PVC [J]. Journal of Applied Polymer Science, 2015, 77(14): 3119–3127.Google Scholar
  22. [22]
    FANG K Y, LI J, KE C H, ZHU Q L, ZHU J. Synergistic effect between a novel hyperbranched flame retardant and melamine pyrophosphate on the char forming of polyamide 6 [J]. Polymer-Plastics Technology and Engineering, 2010, 49(14): 1489–1497.Google Scholar
  23. [23]
    SONG L, HU Y, LIN Z H, XUAN S Y, WANG S F. Preparation and properties of halogen-free flame-retarded polyamide 6/organoclay nanocomposite [J]. Polymer Degradation & Stability, 2004, 86(3): 535–540.Google Scholar
  24. [24]
    HAO X Y, GAI G S, LIU J P, YANG Y F, ZHAGN Y H, NAN C W. Flame retardancy and antidripping effect of OMT/PA nanocomposites [J]. Materials Chemistry & Physics, 2006, 96(1): 34–41.Google Scholar
  25. [25]
    FEI G, LIU Y, WANG Q. Synergistic effects of novolacbased char former with magnesium hydroxide in flame retardant polyamide-6 [J]. Polymer Degradation & Stability, 2008, 93(7): 1351–1356.Google Scholar
  26. [26]
    LU C, WANG J, CHEN L, FU Q, CAI X. The effect of adjuvant on the halogen-free intumescent flame retardant ABS/PA6/SMA/APP blend [J]. Journal of Applied Polymer Science, 2010, 118(3): 1552–1560.Google Scholar
  27. [27]
    SI Gao-Jie, LI Du-xin, YOU Yi-lan, HU Xi. Investigation of the influence of red phosphorus, expansible graphite and zinc borate on flame retardancy and wear performance of glass fiber reinforced PA6 composites [J]. Polymer Composites, 2017, 38(10): 2090–2097.Google Scholar
  28. [28]
    BERNHARD S. Phosphorus-based flame retardancy mechanisms-old hat or a starting point for future development [J]. Materials, 2010, 3: 4710–4745.Google Scholar
  29. [29]
    SUT A, GREISER S, JAGER C, BCHARTEL B. Interactions in multicomponent flame-retardant polymers: Solid-state NMR identifying the chemistry behind it [J]. Polymer Degradation & Stability, 2015, 121: 116–125.Google Scholar
  30. [30]
    FONTAINE G, BOURBIGOT S, DUQUESNE S. Neutralized flame retardant phosphorus agent: Facile synthesis, reaction to fire in PP and synergy with zinc borate [J]. Polymer Degradation & Stability, 2008, 93(1): 68–76.Google Scholar
  31. [31]
    GOLBAKHSHI H, NAMJOO M. Thermo-structural analysis on evaluating effects of friction and transient heat transfer on performance of gears in high-precision assemblies [J]. Journal of Central South University, 2017, 24(1): 71–80.Google Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  2. 2.College of Materials and Chemical EngineeringHunan City UniversityYiyangChina
  3. 3.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations