Advertisement

Journal of Central South University

, Volume 25, Issue 11, pp 2766–2784 | Cite as

Characterization and formation mechanisms of fractures and their significance to hydrocarbon accumulation: A case study of Lower Ordovician mid-assemblage Formations in central Ordos Basin, China

  • Zi-long Zhao (赵子龙)
  • Jing-zhou Zhao (赵靖舟)Email author
  • Hai-jiao Ren (任海姣)
  • Jun Li (李军)
  • Wei-tao Wu (吴伟涛)
Article
  • 41 Downloads

Abstract

The lower Ordovician mid-assemblage Formations in the central Ordos Basin of China host prolific gas resources, and most hydrocarbon reserves are stored in naturally-fractured reservoirs. Thus, fracture pathway systems may have a significant impact on reservoir performance. This article focuses on the core- and laboratory-based characterization of fractures. Through the developmental degrees, extended scale, output state and filling characteristics of various types of fractures, the results show that there are three distinct fracture types: 1) nearly vertical fractures, 2) oblique fractures, and 3) horizontal fractures. Based on a systematic study of the characterization of reservoir space, the main geologic setting of natural gas accumulation and the regional tectonic background, type 1 is mainly driven by the tectonic formation mechanism, and type 3 and parts of low-angle fractures in type 2 are induced by the diagenetic formation mechanism. While recovered paleopressure for methane-rich aqueous inclusions trapped in fracture-filling cement indicates that the fracture opening and growth are consistent with gas maturation and charge and such high-angle fractures in type 2 are caused by the compound formation mechanism. The fractures to hydrocarbon accumulation may play a more significant role in improving the quality of reservoir porosity. Furthermore, connected fractures, dissolved pores and cavities together constitute the three-dimensional pore-cave-fracture network pathway systems, with faults serving as the dominant charge pathways of highly pressurized gas in the study area. Our results demonstrate that protracted growth of a pervasive fracture system is not only the consequence of various formation mechanisms but also intrinsic to quasi-continuous accumulation reservoirs.

Key words

characterization of fracture formation mechanism quasi-continuous accumulation Ordovician mid-assemblage formations Ordos basin 

鄂尔多斯盆地奥陶系中组合裂缝特征及其成藏意义

摘要

近年来中国海相碳酸盐岩油气勘探发现了一批大型油气田, 其中鄂尔多斯盆地奥陶系马家沟组 中组合蕴藏着丰富的天然气资源, 储集空间类型主要有裂缝、裂缝-孔隙、孔隙和裂缝-孔洞型储层, 输导体系由断层、裂缝、溶蚀孔洞和晶间溶孔构成。然而有关奥陶系中组合裂缝特征、裂缝的形成机 制、古压力演化及其成藏意义的报道很少。基于钻井岩心观察、镜下微观分析、流体包裹体系统表征、 生烃增压数值模拟等研究结果, 结合天然气成藏地质背景, 厘定了鄂尔多斯盆地奥陶系中组合裂缝特 征、形成机制及其成藏意义。研究发现, 鄂尔多斯盆地奥陶系中组合碳酸盐岩裂缝主要可分为近垂直 缝、斜交缝和水平缝3 种类型。基于裂缝类型特征和发育的主控因素, 裂缝的成因机制归类为构造-成岩机制和复合成因机制。这些裂缝的形成期次主要有2 期: 第一期为中-晚侏罗世, 第二期为早白 垩世, 且在早白垩世时期大量发育的裂缝成为研究区奥陶系中组合天然气运聚成藏的优势通道和良好 储集空间。重点探讨了超压成藏演化所反映裂缝的形成和天然气运聚成藏过程, 明确了多期次构造运 动叠合和天然气超压-强超压运移充注构筑的裂缝网络体系与奥陶系中组合优势输导能力和良好储集 性能的关系, 建立了相应的机制与模式, 为下一步有利勘探靶区评价及开发部署提供理论指导和地质 依据。

关键词

裂缝特征 形成机制 准连续型成藏 奥陶系中组合 鄂尔多斯盆地 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful to reviewers for the improvement of the submitted article. In particular, we acknowledge Changqing Oilfield Company of PetroChina for the help provided during the research work.

References

  1. [1]
    AWDAL A, HEALY D, ALSOP G I. Fracture patterns and petrophysical properties of carbonates undergoing regional folding: A case study from Kurdistan, N Iraq [J]. Marine and Petroleum Geology, 2016, 71: 149–167. DOI: https://doi.org/10.1016/j.marpetgeo.2015.12.017.CrossRefGoogle Scholar
  2. [2]
    LAUBACH S E. Practical approaches to identifying sealed and open fractures [J]. AAPG Bulletin, 2003, 87(4): 561–579. DOI: 10.1306/11060201106.CrossRefGoogle Scholar
  3. [3]
    ABEDI B, KHARRAT R. Study the effect of fracture inclination, spacing and intensity on polymer flooding efficiency [J]. J Nat Gas Sci Eng, 2016, 34: 645–649. DOI: 10.1016/j.jngse.2016.07.007.CrossRefGoogle Scholar
  4. [4]
    MÄKEL G H. The modelling of fractured reservoirs: Constraints and potential for fracture network geometry and hydraulics analysis [C]//JOLLEY S J, BARR D, WALSH J J, KNIPE R J. Structurally Complex Reservoirs. London: Geological Society, 2007. DOI: 10.1144/SP292.21.Google Scholar
  5. [5]
    LIU Shi, SANG Shu, ZHU Qi, LIU Hui, GAO He. Structure and production fluid flow pattern of post-fracturing high-rank coal reservoir in Southern Qinshui Basin [J]. Journal of Central South University, 2014, 21(10): 3970–3982. DOI: 10.1007/s11771-014-2385-6.CrossRefGoogle Scholar
  6. [6]
    FERNÁNDEZ-IBÁÑEZ F, DEGRAFF J M, IBRAYEV F. Integrating borehole image logs with core: A method to enhance subsurface fracture characterization [J]. AAPG Bulletin, 2018, 102(6): 1067–1090. DOI: 10.1306/0726171609317002.CrossRefGoogle Scholar
  7. [7]
    BISDOM K, GAUTHIER B D M, BERTOTTI G, HARDEBOL N J. Calibrating discrete fracture network models with a carbonate three-dimensional outcrop fracture network: Implications for naturally fractured reservoir modeling [J]. AAPG Bulletin, 2014, 98(7): 1351–1376. DOI: 10.1306/02031413060.CrossRefGoogle Scholar
  8. [8]
    ZAHM C K, HENNINGS P H. Complex fracture development related to stratigraphic architecture: Challenges for structural deformation prediction, Tensleep Sandstone at the Alcova anticline, Wyoming [J]. AAPG Bulletin, 2009, 93(11): 1427–1446. DOI: 10.1306/08040909110.CrossRefGoogle Scholar
  9. [9]
    ZEEB C, GOMEZ-RIVAS E, BONS P D, BLUM P. Evaluation of sampling methods for fracture network characterization using outcrops [J]. AAPG Bulletin, 2013, 97(9): 1545–1566. DOI: 10.1306/02131312042.CrossRefGoogle Scholar
  10. [10]
    BISDOM K, BERTOTTI G, HAMIDREZA M N. A geometrically based method for predicting stress-induced fracture aperture and flow in discrete fracture networks [J]. AAPG Bulletin, 2016, 100(7): 1075–1097. DOI: 10.1306/02111615127.CrossRefGoogle Scholar
  11. [11]
    FAN Jian, QU Xue, WANG Chong, LEI Qi, CHENG Liang, YANG Zi. Natural fracture distribution and a new method predicting effective fractures in tight oil reservoirs of Ordos Basin, NW China [J]. Petroleum Exploration and Development, 2016, 43(5): 806–814. DOI: https://doi.org/10.1016/S1876-3804(16)30096-9.CrossRefGoogle Scholar
  12. [12]
    ZENG Lian, LI Zhong, SHI Cheng, WANG Zheng, ZHAO Ji, WANG Yong. Characteristics and origin of fractures in the extra low-permeability sandstone reservoirs of the upper triassic Yanchang formation in the Ordos basin [J]. Acta Geologica Sinica, 2007, 81(2): 174–180. https://doi.org/www.geojournals.cn/dzxb/ch/reader/create_pdf.aspx?file_no=20070222&flag=1& journal_id=dzxb&year_id=2007.Google Scholar
  13. [13]
    GUO Ling, JIA Chao, DU Wei. Geochemistry of lower Silurian shale of Longmaxi Formation, Southeastern Sichuan Basin, China: Implications for provenance and source weathing [J]. Journal of Central South University, 2016, 23: 669–676. DOI: 10.1007/s11771-016-3112-2.CrossRefGoogle Scholar
  14. [14]
    BAI Yu, ZHAO Jing, ZHAO Zi, YIN Yue, TONG Jiang. Accumulation conditions and characteristics of the Chang 7 tight oil reservoir of the the Yanchang Formation in Zhidan area, Ordos Basin [J]. Oil & Gas Geology, 2013, 34(5): 631–639. DOI: 10.11743/ogg20130508.Google Scholar
  15. [15]
    FU Jin, DENG Xiu, WANG Qi, LI Ji, QIU Jun, HAO Le, ZHAO Yan. Compaction and hydrocarbon accumulation of Triassic Yanchang Formation Chang 8 Member, Ordos Basin, NW China: Evidence from geochemistry and fluid inclusions [J]. Petroleum Exploration and Development, 2017, 44(1): 48–57. DOI: https://doi.org/10.1016/S1876-3804(17)30007-1.CrossRefGoogle Scholar
  16. [16]
    TAN Yong, QIU Rui, XIAO Qing, ZHOU Su. Indosinian movement characteristics and its significance in China and neighboring areas [J]. Coal Geology of China, 2014, 26(8): 8–14. DOI: 10.3969/j.issn.1674-1803.2014. 08.03.Google Scholar
  17. [17]
    PANG Chong, ZHANG Ya, WANG Jing, WU Tie. Structural features of the middle section and its petroleum exploration prospects in the west margin of Ordos Basin [J]. Geoscience, 2016, 30(2): 274–285. http://en. cnki.com.cn/Article_en/CJFDTotal-XDDZ201602003.htm.Google Scholar
  18. [18]
    YANG Jun. Tectonic evolution and petroleum distribution of Ordos Basin [M]. Beijing: Petroleum Industry Press, 2002: 228. (in Chinese)Google Scholar
  19. [19]
    ZHAO Jing, CAO Qing, BAI Yu, ER Chuang, LI Jun, WU Wei, SHEN Wu. Petroleum accumulation: From the continuous to discontinuous [J]. Petroleum Research, 2017, 2(2): 131–145. DOI: https://doi.org/10.1016/j.ptlrs.2017.02.001.CrossRefGoogle Scholar
  20. [20]
    ZHAO Jing, LI Jun, CAO Qing, BAI Yu, ER Chuang, WANG Xiao, XIAO Hui, WU Wei. Hydrocarbon accumulation patterns of large tight oil and gas fields [J]. Oil & Gas Geology, 2013, 34(5): 573–583. DOI: 10.11743 /ogg20130501.Google Scholar
  21. [21]
    ZHAO Jing, CAO Qing, BAI Yu, ER Chuang, LI Jun, WU Wei, SHEN Wu. Petroleum accumulation from continuous to discontinuous: Concept, classification and distribution [J]. Acta Petrolei Sinica, 2016, 37(2): 145–159. DOI: 10.7623/syxb201602001.Google Scholar
  22. [22]
    ZHAO Jing, ZHANG Wen, LI Jun, CAO Qing, FAN Yuan. Genesis of tight sand gas in the Ordos Basin, China [J]. Organic Geochemistry, 2014, 74: 76–84. DOI: https://doi.org/10.1016/j.orggeochem.2014.03.006.CrossRefGoogle Scholar
  23. [23]
    LI Jun, ZHAO Jing, WANG Da, SUN Liu, REN Jun, WU Chun, WU Wei, ZHAO Zi, QU Fu. Genesis and source of the Ordovician mid-assemblage natural gas in the east side of the central paleo-uplift, Ordos Basin [J]. Acta Petrolei Sinica, 2016, 37(7): 821–831. DOI: 10.7623/syxb201607001.CrossRefGoogle Scholar
  24. [24]
    YANG Hua, LIU Xin, ZHANG Dao. Main controlling factors of gas pooling in Ordovician marine carbonate reservoirs in the Ordos Basin and advances in gas exploration [J]. Natural Gas Industry, 2013, 33(5): 1–12. DOI: 10.3787/j.issn. 1000–0976.2013.05.001.Google Scholar
  25. [25]
    HUANG Zheng, CHEN Tiao, REN Jun, BAO Hong. The characteristics of dolomite reservoir and trap accumulation in the middle assemblages of Ordovician in Ordos Basin, China [J]. Acta Petrolei Sinica, 2012, 33(S2): 118–124. https://doi.org/www.syxb-cps.com.cn/CN/10.7623/syxb2012S2011.Google Scholar
  26. [26]
    BAO Hong, YANG Chen. Study on microfacies of Majiagou Formation, Lower Ordovician, eastern Ordos, north China [J]. Journal of Palaeogeography, 2000, 2(1): 31–42. DOI: 10.7605/gdlxb.2000.01.004.MathSciNetGoogle Scholar
  27. [27]
    BAO Hong, ZHANG Yun, WANG Qian, DONG Zhao, WU Chun, YANG Xi. Distribution and evolution of sedimentary microfacies of submember 5 Majiagou Formation in the Ordos basin [J]. Coal Geology & Exploration, 2016, 44(5): 16–21. DOI: 10.3969/j.issn.1001-1986.2016.05.003.Google Scholar
  28. [28]
    ZHANG Zhuang, YANG Xi, DONG Zhao. Characteristics and genesis of Ordovician Majiagou Submember-55 dolostone in middle assemblage, Ordos Basin [J]. Marine Origin Petroleum Geology, 2016, 21(2): 65–71. DOI: 10.3969/j.issn.1672-9854.2016.02.008.Google Scholar
  29. [29]
    LØNØY A. Making sense of carbonate pore systems [J]. AAPG Bulletin, 2006, 90(9): 1381–1405. DOI: 10.1306/03130605104.CrossRefGoogle Scholar
  30. [30]
    ZHAO Wen, ZHU Guang, ZHANG Shui, ZHAO Xue, SUN Yu, WANG Hong, YANG Hai, HAN Jian. Relationship between the later strong gas-charging and the improvement of the reservoir capacity in deep Ordovician carbonate reservoir in Tazhong area, Tarim Basin [J]. Chinese Sci Bull, 2009, 54(20): 3218–3230. DOI: 10.1007/s11434-009-0457-z.CrossRefGoogle Scholar
  31. [31]
    DUAN Zhen, MAO Shi. A thermodynamic model for calculating methane solubility, density and gas phase composition of methane-bearing aqueous fluids from 273 to 523K and from 1 to 2000 bar [J]. Geochimica et Cosmochimica Acta, 2006, 70(13): 3369–3386. DOI: https://doi.org/10.1016/j.gca.2006.03.018.CrossRefGoogle Scholar
  32. [32]
    FALL A, EICHHUBL P, CUMELLA S P, BODNAR R J, LAUBACH S E, BECKER S P. Testing the basin-centered gas accumulation model using fluid inclusion observations: Southern Piceance Basin, Colorado [J]. AAPG Bulletin, 2012, 96(12): 2297–2318. DOI: 10.1306/05171211149.CrossRefGoogle Scholar
  33. [33]
    GUO Xiao, LIU Ke, JIA Cheng, SONG Yan, ZHAO Meng, LU Xue. Effects of early petroleum charge and overpressure on reservoir porosity preservation in the giant Kela-2 gas field, Kuqa depression, Tarim Basin, northwest China [J]. AAPG Bulletin, 2016, 100(2): 191–212. DOI: 10.1306/11181514223.CrossRefGoogle Scholar
  34. [34]
    BECKER S P, EICHHUBL P, LAUBACH S E, REED R M, LANDER R H, BODNAR R J. A 48-m.y. history of fracture opening, temperature, and fluid pressure: Cretaceous Travis Peak Formation, East Texas Basin [J]. Geological Society of America Bulletin, 2010, 122(7, 8): 1081–1093. DOI: 10.1130/B30067.1.CrossRefGoogle Scholar
  35. [35]
    GOLDSTEIN R H, REYNOLDS T J. Systematics of fluid inclusions in diagenetic minerals [J]. SEPM (Society for Sedimentary Geology) Short Course, 1994, 31: 199. DOI: 10.2110/scn.94.31.Google Scholar
  36. [36]
    CHEN Yong, BURKE E A J. Laser Raman microspectroscopy of fluid inclusions; theory, method, problems and future trends [J]. Geological Review, 2009, 55(6): 851–861. DOI: 10.16509/j.georeview.2009.06.010.Google Scholar
  37. [37]
    LIN F, BODNAR R J, BECKER S P. Experimental determination of the Raman CH4 symmetric stretching (υ1) band position from 1–650 bar and 0.3–22 °C; application to fluid inclusion studies [J]. Geochimica et Cosmochimica Acta, 2007, 71(15): 3746–3756. DOI: https://doi.org/10. 1016/j.gca.2007.05.016.CrossRefGoogle Scholar
  38. [38]
    ZHAO Jing. Development characteristics of gas reservoir of the Ordovician mid-assemblage natural gas in the east side of the central paleo-uplift, Ordos Basin [D]. Xi’an: Xi’an Shiyou University, 2015. (in Chinese)Google Scholar
  39. [39]
    YAO Jing, WANG Cheng, CHEN Juan, GAO Gang, WANG Fei, LI Xiao, LI Jia, LIU Yan. Distribution characteristics of sub-salt carbonate source rocks in Majiagou Formation, Ordos Basin [J]. Natural Gas Geoscience, 2016, 27(12): 2115–2126. DOI: 10.11764/j.issn.1672-1926.2016.12.2115.Google Scholar
  40. [40]
    ZENG Lian, QI Jia, WANG Cheng, LI Yan. The influence of tectonic stress on fracture formation and fluid flow [J]. Earth Science Frontiers, 2008, 15(3): 292–298. https://doi.org/www.earthsciencefrontiers.net.cn/CN/article/searchArticle.do.Google Scholar
  41. [41]
    WANG Zhen, WEI Li, WANG Xiang, WANG Nian, FAN Chang, LI Yan, ZHAO Xue, ZHAO Xiao, REN Lai, CAO Hong. Accumulation process and mechanism of Lower Paleozoic gas reservoir in Yan’an area, Ordos Basin [J]. Acta Petrolei Sinica, 2016, 37(S1): 99–110. DOI: 10.7623/syxb2016S1010.Google Scholar
  42. [42]
    HAO Fang, ZOU Hua. Cause of shale gas geochemical anomalies and mechanisms for gas enrichment and depletion in high-maturity shales [J]. Marine and Petroleum Geology, 2013, 44: 1–12. DOI: https://doi.org/10.1016/j.marpetgeo. 2013.03.005.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Continental DynamicsNorthwest UniversityXi’anChina
  2. 2.Department of GeologyNorthwest UniversityXi’anChina
  3. 3.Shaanxi Key Laboratory of Petroleum Accumulation GeologyXi’an Shiyou UniversityXi’anChina
  4. 4.School of Earth Sciences and EngineeringXi’an Shiyou UniversityXi’anChina

Personalised recommendations