Advertisement

Journal of Central South University

, Volume 25, Issue 6, pp 1489–1500 | Cite as

Petrogenesis of granite from Xiaofan Mo deposit, Dabie Orogen

  • Qing-quan Liu (刘清泉)
  • Yong-jun Shao (邵拥军)
  • Ke-ping Zhou (周科平)
  • Yong-feng Li (李永峰)
Article

Abstract

The Mesozoic granitoids in the Dabie Orogen are of particular geological interest as indicators for Mesozoic lithospheric evolution because of their close association with porphyry Mo mineralization. Here, we present a study using petrogeochemistry data to constrain the petrogenesis of the Xiaofan granites in the Dabie Mo mineralization belt (DMB), Henan Province, China. Field investigations show that the Xiaofan pluton mainly consists of porphyritic granite. The Xiaofan granites have high SiO2 contents of 74.29 wt%–76.07 wt% (average: 75.18 wt%), Al2O3 contents of 11.66 wt%–12.83 wt% (average: 12.13 wt%), and K2O contents of 5.37 wt%–7.90 wt% (average: 6.86 wt%) and low MgO (0.06 wt%–0.16 wt%), TiO2 (0.09 wt%–0.10 wt%), and P2O5 (0.047 wt%–0.103 wt%) contents. They are enriched in Rb, U, K and Hf but depleted in Ba, Nb, Ta, Sr and Ti. By geochemical and mineralogical features, we propose that the Xiaofan granites belong to A-type type granite and dominantly sourced from the crust. The granites from the Xiaofan Mo deposit may have formed in a post-collision extensional setting.

Key words

granite petrogenesis Xiaofan Mo deposit Dabie Orogen 

大别造山带肖畈钼矿床花岗岩岩石成因

摘要

大别造山带中生代花岗岩类岩石不仅能够提供中生代岩石圈演化信息,而且该类岩石往往与斑 岩型钼矿床的形成有着密切的联系。本文选择大别钼成矿带上肖畈钼矿床花岗岩,开展岩石地球化学 特征研究,岩相学特征表明肖畈花岗岩体属斑岩花岗岩。岩石地球化学结果显示,花岗岩具有高SiO2 含量(74.29 wt%~76.07wt%,平均值75.18 wt%),高Al2O3 含量(11.66 wt%~12.83 wt%,平均值 12.13 wt%)和高K2O 含量(5.37 wt%~7.90 wt%,平均值6.86 wt%),以及低 MgO 含量 (0.06 wt%~ 0.16 wt%),低TiO2 含量(0.09 wt%~0.10 wt%)和低P2O5 含量(0.047 wt%~0.103 wt%),岩石富集Rb, U,K 和Hf,亏损Ba,Nb,Ta,Sr 和Ti。结合岩石产出地质背景和矿物学特征,认为肖畈花岗岩属 于源于下地壳的A 型花岗岩,形成于后碰撞伸展环境。

关键词

花岗岩 岩石成因 肖畈钼矿床 大别造山带 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    MARTIN H, SMITHIES R H, RAPP R, MOYEN J F, CHAMPION D. An overview of adakite, tonalitetrondhjemiten-granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution [J]. Lithos, 2005, 79(1, 2): 1–24. DOI: 10.1093/petrology/egp060.CrossRefGoogle Scholar
  2. [2]
    MO Xuan, HOU Zheng, NIU Yao, DONG Guo, QU, Xiao-ming, ZHAO Zhi, YANG Zhi. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet [J]. Lithos, 2007, 96(1, 2): 225–242. DOI: 10.1016/j.lithos.2006.10.005.CrossRefGoogle Scholar
  3. [3]
    WANG Qiang, WYMAN D A, XU Ji, JIAN Ping, ZHAO Zheng, LI Chao, XU Wei, MA Jing, HE Bin. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: Implications for partial melting and delamination of thickened lower crust [J]. Geochimica et Cosmochimica Acta, 2007, 71(10): 2609–2636. DOI: 10.1016/j.gca.2007.03.008.CrossRefGoogle Scholar
  4. [4]
    LI Yong, MAO Jing, HU Hua, GUO Bao, BAI Feng. Geology, distribution, types and tectonic settings of Mesozoic molybdenum deposits in East Qinling area [J]. Mineral Deposits, 2005, 24(3): 292–304. DOI: 10.16111/j.0258-7106.2005.03.009. (in Chinese)Google Scholar
  5. [5]
    LIU Qing, LIU Yu, LI Yong, LUO Zheng, XIE Ke. Metallogenic conditions and genesis of porphyry type molybdenum deposit in the northern piedmont of Dabieshan Mountain [J]. Contributions to Geology and Mineral Resources Research, 2013, 28(1): 27–33. DOI: 10.6053/J.issn.1001-1412.2013.01.004. (in Chinese)Google Scholar
  6. [6]
    LIU Qing, ZHANG Zhi, LI Yong, LUO Zheng, XIE Ke. Geologic features, mineralization epoch and tectonic setting of molybdenum deposits in the northern dabie mountain [J]. Geology and Prospecting, 2014, 50(2): 199–215. DOI: 10.13712/j.cnki.dzykt. 2014.02.001. (in Chinese)Google Scholar
  7. [7]
    LIU Qing, SHAO Yong, CHEN Xin-Meng, LIU Zhong, ZHANG Zhe. Petrogeochemistry, geochronology and Hf isotopes of the monzogranite from Xinxian, Southern region in Henan Province [J]. Earth Science, 2016, 41(8): 1275–1294. DOI: 10. 3799/dqkx.2016.507. (in Chinese)Google Scholar
  8. [8]
    LIU Qing, SHAO Yong, LI Yong, LUO Zheng. Processes and ore genesis at the Yaochong Mo deposit, Henan Province, China [J]. Ore Geology Reviews, 2017, 86: 692–706. DOI: 10.1016/j.oregeorev.2017.04.001.CrossRefGoogle Scholar
  9. [9]
    MAO Jing, PIRSJNO F, XIANG J F, GAO Jian, YE Hui, LI Yong, GUO Bao. Mesozoic molybdenum deposits in the East Qinling–Dabie Orogenic belt: Characteristics and tectonic settings [J]. Ore Geology Reviews, 2011, 43(1): 264–293. DOI: 10.1016/j.oregeorev. 2011.07.009.CrossRefGoogle Scholar
  10. [10]
    YANG Ze, TANG Xiang. Geochemical characteristics and zircon LA–ICP–MS U–Pb isotopic dating of the Xiaofan rock bodies in North Dabieshan [J]. Acta Geologica Sinica, 2015, 89(4): 692–700. (in Chinese)Google Scholar
  11. [11]
    CHEN Yan, WANG Pin, LI Nuo, YANG Yong, PIRAJNO F. The collision-type porphyry Mo deposits in Dabie Shan, China [J]. Ore Geology Reviews, 2017, 81(2): 405–430. DOI: 10.1016/j.oregeorev.2016.03.025.CrossRefGoogle Scholar
  12. [12]
    LI S G, HUANG F, NIE Y H, HAN W L, LONG G, LI H M, ZHANG S Q, ZHANG Z H. Geochemical and geochronological constraints on the suture location between the North and South China blocks in the Dabie orogen, central China [J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2011, 26(1): 655–672. DOI: 10.1016/S1464-1895(01)00117-X.Google Scholar
  13. [13]
    LIU X C, JAHN B M, HU J, LI S Z, LIU X, SONG B. Metamorphic patterns and SHRIMP zircon ages of mediumto high grade rocks fromthe Tongbai orogen, central China: Implications for multiple accretion-collision processes prior to terminal continental collision [J]. Journal of Metamorphic Geology, 2011, 29(9): 979–1002. DOI: 10.1111/j.1525-1314.2011.00952.xCrossRefGoogle Scholar
  14. [14]
    CHEN Yan, FU Shi. Gold mineralization in west Henan, China [M]. Beijing: China Seismological Press, 1992: 1–234. (in Chinese)Google Scholar
  15. [15]
    Henan bureau of geology and mineral resources, the regional geology of henan province [M]. Beijing: Geological Publishing House, 1989: 1–772. (in Chinese)Google Scholar
  16. [16]
    LIU Xiao, JAHN B M, LI San, LIU Yong. U–Pb zircon age and geochemical constraints on tectonic evolution of the Paleozoic accretionary orogenic system in the Tongbai orogen, central China [J]. Tectonophysics, 2013, 599(4): 67–88. DOI: 10.1016/j.tecto.2013.04.003.CrossRefGoogle Scholar
  17. [17]
    BRYANT D L, AYERS J C, GAO Shan, MILLER C F, ZHANG Hong. Geochemical, age, and isotopic constraints on the location of the Sino-Korean-Yangtze Suture and evolution of the Northern Dabie Complex, east central China [J]. Geological Society of America Bulletin, 2004, 116(5): 698–717. DOI: 10.1130/B25302.2.CrossRefGoogle Scholar
  18. [18]
    HACKER B R, RATSHBACHER L, WEBB L E, IRELAND T R, CALVERT A, DONG S, WENK H R, CHATEIGNER D. Exhumation of ultrahigh-pressure continental crust in east-central China: Late Triassic–Early Jurassic tectonic unroofing [J]. Journal of Geophysical Research Solid Earth, 2000, 105(10): 339–364. DOI: 10.1029/2000JB900039.Google Scholar
  19. [19]
    ZHENG Jian, SUN Min, LU Feng, PEARSO N. Mesozoic lower crustal xenoliths and their significance in lithospheric evolution beneath the Sino-Korean Craton [J]. Tectonophysics, 2003, 361(1, 2): 37–60. DOI: 10.1016/S0040-1951(02)00537-1.CrossRefGoogle Scholar
  20. [20]
    JAHN B M, WU F Y, LO C H, TSAI C H. Crust-mantle interaction induced by deep subduction of the continental crust: geochemical and Sr–Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China [J]. Chemical Geology, 1999, 365(2, 3): 119–146. DOI: 10.1016/S0009-2541(98)00197-1.CrossRefGoogle Scholar
  21. [21]
    ZHENG Yong, ZHAO Zi, WU Yuan, ZHANG Shao, LIU Xiao, WU Fu. Zircon U–Pb age, Hf and O isotope constraints on protolith origin of ultrahighpressure eclogite and gneiss in the Dabie orogen [J]. Chemical Geology, 2006, 231(1, 2): 135–158. DOI: 10.1016/j.chemgeo.2006.01.005.CrossRefGoogle Scholar
  22. [22]
    YOU Zhen, HAN Yu, YANG Wei, ZHANG Ze, WEI Bi, LIU Rong. The high-pressure and ultra high-pressure metamorphic belt in the east qinling and dabie mountains, China [M]. Wuhan: China University of Geosciences Press, 1996: 1–150. (in Chinese)Google Scholar
  23. [23]
    GAO Yang, MAO Jing, YE Jing, LI Fa, LI Yong, LUO Zheng, XIONG Bi, MENG Fang. Geochronology, geochemistry and Sr–Nd–Pb isotopic constraints on the origin of the Qian’echong porphyry Mo deposit, Dabie orogen, east China [J]. Journal of Asian Earth Sciences, 2014, 85: 163–177. DOI: 10.1016/j.jseaes.2014. 02.004.CrossRefGoogle Scholar
  24. [24]
    FAN Wei, GUO Feng, WANG Yue, ZHANG Ming. Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China: Partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie orogen [J]. Chemical Geology, 2004, 209(1, 2): 27–48. DOI: 10.1016/j.chemgeo.2004.04.020.CrossRefGoogle Scholar
  25. [25]
    HE Yong, LI Shu, HOEFS J, HUANG Fang, LIU Sheng, HOU Zhen. Post-collisional granitoids from the Dabie orogen: New evidence for partial melting of athickened continental crust [J]. Geochimica et Cosmochimica Acta, 2011, 75(13): 3815–3838. DOI: 10.1016/j.gca.2011.04.011.CrossRefGoogle Scholar
  26. [26]
    MI Mei, CHEN Yan, YANG Yong, WANG Pin, LI Fa, WAN Shou, XU You. Geochronology and geochemistry of the giant Qian’echong Mo deposit, Dabie Shan, eastern China: Implications for ore genesis and tectonic setting [J]. Gondwana Research, 2015, 27(3): 1217–1235. DOI: 10.1016/j.gr.2014.05.006.CrossRefGoogle Scholar
  27. [27]
    WANG Guo, NI Pei, YU Wen, CHEN Hui, JIANG Lai, WANG Bo, ZHANG Huai, LI Peng. Petrogenesis of Early Cretaceous post-collisional granitoids at Shapinggou, Dabie Orogen: Implications for crustal architecture and porphyry Mo mineralization [J]. Lithos, 2014, 184–187(1): 393–415. DOI: 10.1016/j.lithos.2013. 11.009.CrossRefGoogle Scholar
  28. [28]
    WANG Pin, WANG Yun, YANG Yong. Zircon U–Pb geochronology and isotopic geochemistry of the Tangjiaping Mo deposit, Dabie Shan, eastern China: Implications for ore genesis and tectonic setting [J]. Ore Geology Reviews, 2017, 81(2): 288–300. DOI: 10.1016/j.oregeorev.2016.05.004.Google Scholar
  29. [29]
    ZHAO Zi, ZHENG Yong, WEI Chun, WU Fu. Origin of post collisional magmatic rocks in the Dabie orogen: Implications for crust-mantle interaction and crustal architecture [J]. Lithos, 2011, 126(1, 2): 99–114. DOI: 10.1016/j.lithos.2011.06.010.CrossRefGoogle Scholar
  30. [30]
    MA Chang, LI Zhi, EHLERS C, YANG Kun, WANG Ren. A post-collisional magmatic plumbing system: Mesozoic granitoid plutons fromthe Dabieshan high-pressure and ultrahigh pressure metamorphic zone, east-central China [J]. Lithos, 1998, 45(1–4): 431–456. DOI: 10.1016/S0024-4937(98)00043-7.CrossRefGoogle Scholar
  31. [31]
    MAO J W, PIRAJNO P, COOK N. Mesozoic metallogeny in East China and corresponding geodynamic settings–An introduction to the special issue [J]. Ore Geology Reviews, 2011, 43(1): 1–7. DOI: 10.1016/j.oregeorev.2011.09.003.CrossRefGoogle Scholar
  32. [32]
    MENG Fang. Study on Rock-forming and ore-forming of the Lingshan pluton in the northern margin of Dabie Mountains [D]. Chinese Academy of Geological Sciences, 2013. (in Chinese)Google Scholar
  33. [33]
    ZHOU Li, XIA Qiong, ZHENG Yong, HU Zhao. Polyphase growth of garnet in eclogite from the Hong'an orogen: Constraints from garnet zoning and phase equilibrium [J]. Lithos, 2014, 206–207: 79–99. DOI: 10.1016/j.lithos.2014.06.020.CrossRefGoogle Scholar
  34. [34]
    CAO Jing, WU Qian, LI Huan, OUYANG Cheng, KONG Hua, XI Xiao. Metallogenic mechanism of Pingguo bauxite deposit, Western Guangxi, China: Constraints from REE geochemistry and multi-fractal characteristics of major elements in bauxite ore [J]. Journal of Central South University, 2017, 24(7): 1627–1636. DOI: 10.1007/s11771-017-3568-8.CrossRefGoogle Scholar
  35. [35]
    SUN S S, MCDONOUGH W F. Chemical and isotopic systematics of oceanic basalts: Implication for the mantle composition and process [J]. Geological Society of London Special Publication, 1989, 42(1): 313–345. DOI: 10.1144/GSL.SP.1989.042.01.19.CrossRefGoogle Scholar
  36. [36]
    WATSON E B, HARRISON T M. Zircon saturation revisited: Temperature and compositional effects in variety of crustal magma types [J]. Eeath and Planetaty Science Letters, 1983, 64(2): 295–304. DOI: 10.1016/0012-821X(83)90211-X.CrossRefGoogle Scholar
  37. [37]
    MIDDLEMOST E A. Naming materials in the magma/igneous rock system [J]. Earth-Science Reviews, 1994, 37(3, 4): 215–224. DOI: 10.1016/0012-8252(94)90029-9.CrossRefGoogle Scholar
  38. [38]
    STRECKEISEN A. To each plutonic rock its proper name [J]. Earth–Science Reviews, 1976, 12(1): 1–33. DOI: 10.1016/0012-8252(76)90052-0.Google Scholar
  39. [39]
    RICKWOOD P C. Boundary lines within petrologic diagrams which use oxides of major and minor elements [J]. Lithos, 1989, 22(4): 247–263. DOI: 10.1016/0024-4937(89)90028-5.CrossRefGoogle Scholar
  40. [40]
    COLLINS W J, BEAMS S D, WHITE A J R, CHAPPELL B W. Nature and origin of A-type granites with particular reference to southeastern Australia [J]. Contributions to Mineralogy and Petrology. 1982, 80(2): 189–200. DOI: 10.1007/BF00374895.Google Scholar
  41. [41]
    WHALEN J B, CURRIE K L, CHAPPELL B W. A-type granites: Geochemical characteristics, discrimination and petrogenesis [J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407–419. DOI: 10.1007/BF00402202.CrossRefGoogle Scholar
  42. [42]
    FROST B R, BARNES C G, COLLINS W J, ARCULUS R J, ELLIS D J, FROST C D. A geochemical classification for granitic rocks [J]. Journal of Petrology, 2001, 42(11): 2033–2048. DOI: 10.1093/petrology/42.11.2033.CrossRefGoogle Scholar
  43. [43]
    PATINO D A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids [J]. Geology, 1997, 25(8): 743–746. DOI: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2.CrossRefGoogle Scholar
  44. [44]
    PENG Min, WU Yuan, GAO Shan, ZHANG Hong, WANG Jing, LIU Xiao, GONG Hu, ZHOU Lian, HU Zhao, LIU Yong, YUAN Hong. Geochemistry, zircon U–Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze Block: Constraints on petrogenesis and geologic implications [J]. Gondwana Research, 2012, 22(1): 140–151. DOI: 10.1016/j.gr.2011.08.012.CrossRefGoogle Scholar
  45. [45]
    MILLER C F, MCDOWELL S M, MAPES R W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance [J]. Geology, 2003, 31(6): 529–532. DOI: 10.1130/0091-7613(2003)031<0529: HACGIO>2.0.CO;2.CrossRefGoogle Scholar
  46. [46]
    DEFANT M J, DRUMMOND M S. Derivation of some modern arc magmas by melting of young subducted lithosphere [J]. Nature, 1990, 347(6294): 662–665. DOI: 10.1038/347662a0.CrossRefGoogle Scholar
  47. [47]
    RUDNICK R L, GAO Shan. Composition of the continental crust [M]//Treatise on Geochemistry, Volume 3. Oxford: Elsevier-Pergamon, 2003: 1–64.Google Scholar
  48. [48]
    GAO Yang, MAO Jing, YE Hui, LI Yong, LUO Zheng, YANG Ze. Petrogenesis of ore-bearing porphyry from the Tangjiaping porphyry Mo deposit, Dabie orogen: Zircon U–Pb geochronology, geochemistry and Sr–Nd–Hf isotopic constraints [J]. Ore Geology Reviews, 2016, 79: 288–300. DOI: 10.1016/j.oregeorev.2016.05.015.CrossRefGoogle Scholar
  49. [49]
    AMES L, TILTON G R, ZHOU Gao. Timing of collision of the Sino-Korean and Yangtze Blocks: U–Pb zircon dating of coesite–bearing eclogites [J]. Geology, 1993, 21(3): 339–342. DOI: 10.1130/0091-7613(1993)021<0339: TOCOTS>2.3.CO;2.CrossRefGoogle Scholar
  50. [50]
    HACKER B R, RATSCHBACHER L, LIOU J G. Subduction, collision and exhumation in the ultrahighpressure Qinling–Dabie orogen [J]. Geological Society, 2004(s): 157–175. DOI: 10.1144/GSL. SP.2004.226.01.09.Google Scholar
  51. [51]
    GAO Shan, LUO Ting, ZHANG Ben, ZHANG Hong, HAN Yin, ZHAO Zi, HU Yi. Chemical composition of the continental crust as revealed by studies in East China [J]. Geochimica et Cosmochimica Acta, 1998, 62(11): 1959–1975. DOI: 10.1016/S0016-7037(98)00121-5.CrossRefGoogle Scholar
  52. [52]
    NIU Bao, HE Zhen, SONG Biao, REN Ji. SHRIMP dating of the Zhangjiakou volcanic series and its significance [J]. Geological Bulletin China, 2003, 22(2): 140–141.Google Scholar
  53. [53]
    MAO Jing, CHENG Yan, CHEN Mao, PIRAJNO F. Major types and time-space distribution of Mesozoic ore deposits in South China and their geodynamic settings [J]. Mineralium Deposita, 2013, 48(3): 267–294. DOI: 10.1007/s00126-012-0446-z.CrossRefGoogle Scholar
  54. [54]
    LING Ming, WANG Fang, DING Xing, HU Yan, ZHOU Li, ZARTMAN R E, YANG Xiao, SUN Wei. Cretaceous ridge subduction along the Lower Yangtze River belt, Eastern China [J]. Economic Geology, 2009, 104(2): 303–321. DOI: 10.2113/gsecongeo. 104.2.303.CrossRefGoogle Scholar
  55. [55]
    MAO Jing, WANG Yi, LEHMANN B, YU Jin, DU An, MEI Yan, LI Yong, ZANG Wen, STEIN H J, ZHOU Tao. Molybdenite Re–Os and albite 40Ar–39Ar dating of Cu–Au–Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications [J]. Ore Geology Reviews, 2006, 29(3, 4): 307–324. DOI: 10.1016/j.oregeorev.2005.11.001.CrossRefGoogle Scholar
  56. [56]
    MAO J W, XIE G Q, BIERLEIN F, QU W J, DU A D, YE H S, PIRAJNO F, LI H M, GUO B J, LI Y F, YANG Z Q. Tectonic implications from Re–Os dating of Mesozoic molybdenum deposits in the East Qinling–Dabie orogenic belt [J]. Geochimica et Cosmochimica Acta, 2008, 72(18): 4607–4626. DOI: 10.1016/j.gca.2008.06.027.CrossRefGoogle Scholar
  57. [57]
    MAO J W, XIE G Q, PIRAJNO F, YE H S, WANG Y B, LI Y F, XIANG J F, ZHAO H J. Late Jurassic–Early Cretaceous granite magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U–Pb ages and tectonic implications [J]. Australian Journal of Earth Sciences, 2010, 57(1): 51–78. DOI: 10.1080/08120090903416203.CrossRefGoogle Scholar
  58. [58]
    PEARCE J A, HARRIS N B W, TINDLE A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks [J]. Journal of Petrology, 1984, 25(4): 956–983. DOI: 10.1093/petrology/25.4.956.CrossRefGoogle Scholar
  59. [59]
    MANIAR P D, PICCOLI P M. Tectonic discrimination of granitoids [J]. Geological Socient of America Bulletin, 1987, 101(5): 365–643. DOI: 10.1130/0016-7606(1989)101< 0635:TDOG>2.3.CO;2.Google Scholar
  60. [60]
    ALIREZAEI S, HASSANZADEH J. Geochemistry and zircon geochronology of the Permian A-type Hasanrobat granite, Sanandaj–Sirjan belt: A new record of the Gondwana break-up in Iran [J]. Lithos, 2012, 151(11): 122–134. DOI: 10.1016/j.lithos.2011.11.015.CrossRefGoogle Scholar
  61. [61]
    BONIN B. A-type granites and related rocks: Evolution of a concept, problems and prospects [J]. Lithos, 2007, 97(1, 2): 1–29. DOI: 10.1016/j.lithos.2006.12.007.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qing-quan Liu (刘清泉)
    • 1
    • 2
  • Yong-jun Shao (邵拥军)
    • 2
  • Ke-ping Zhou (周科平)
    • 1
  • Yong-feng Li (李永峰)
    • 3
  1. 1.School of Resources and Safety EngineeringCentral South UniversityChangshaChina
  2. 2.Key Laboratory of Metallogenic Prediction of Non-ferrous Metals and Geological Environment MonitoringMinistry of Education (School of Geosciences and Info-Physics, Central South University)ChangshaChina
  3. 3.Henan Provincial Non-Ferrous Metals Geological and Mineral Resources BureauZhengzhouChina

Personalised recommendations