Advertisement

Journal of Central South University

, Volume 25, Issue 6, pp 1358–1366 | Cite as

Effect of heat input on microstructure and mechanical properties of butt-welded dissimilar magnesium alloys joint

  • Fang-zhou Yang (杨方洲)
  • Jie Zhou (周杰)
  • Yi-bo Xiong (熊逸博)
Article
  • 24 Downloads

Abstract

The effects of heat input on the microstructures and mechanical properties of tungsten inert gas (TIG) butt-welded AZ31/MB3 dissimilar Mg alloys joint were investigated by microstructural observations, microhardness testing and tensile testing. The results reveal that with the increase of heat input, the width of welding seam increases obviously and the grains both in the fusion zone and the heat affected zone coarsen during TIG welding process. The tensile strength of butt-welded joint increases with the increase of heat input and the maximum joining strength of 242 MPa is obtained with welding current of 90 A. However, lots of welding pores occur with the further increase of heat input, which results in the decrease of joining strength. It is experimentally demonstrated that robust joint can be obtained by TIG welding process.

Key words

magnesium alloy TIG welding microstructure mechanical property 

热输入对镁合金对焊接头微观组织和力学性能的影响

摘要

通过观察微观结构、硬度检测和力学性能检测,研究热输入对AZ31/MB3 镁合金钨极氩弧焊接 头微观组织和力学性能的影响。实验结果表明:随着热输入的增加,焊缝宽度明显增加,同时接头熔 焊区和热影响区的晶粒也出现粗化。镁合金对焊接头的力学性能也随热输入的增加而增强,当焊接电 流为90 A 时,焊件达到最高连接强度242 MPa。然而当焊接电流过大时,焊接孔洞出现,导致接头连 接强度下降。综上所述,可以通过钨极氩弧焊工艺获得可靠的镁合金接头。

关键词

镁合金 钨极氩弧焊 微观结构 力学性能 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    LIU De, XIN Ren, ZHAO Long, HU Yong. Effect of textural variation and twinning activity on fracture behavior of friction stir welded AZ31 Mg alloy in bending tests [J]. Journal of Alloys and Compounds, 2017, 693: 808–815.CrossRefGoogle Scholar
  2. [2]
    YANG Fang, PAN Cheng, HU Xing. Effect of hot forging temperature on microstructure and properties of die repairing layer [J]. Hot Working Technology, 2014, 43(3): 101–103.Google Scholar
  3. [3]
    XU Chuan, SHENG Guang, WANG Hui, FENG Ke, YUAN Xin. Tungsten inert gas welding-brazing of AZ31B magnesium alloy to TC4 titanium alloy [J]. Journal of Materials Science & Technology, 2016, 32(2): 167–171.CrossRefGoogle Scholar
  4. [4]
    HE Wen, XIAO Yi, WU Liang, XU Yan, QIAN Jin, HE Yue, ZHENG Xue. Effects of Mg content on pore structure and electrochemical corrosion behaviors of porous Al-Mg alloys [J]. Journal of Central South University, 2016, 23(10): 2483–2491.CrossRefGoogle Scholar
  5. [5]
    LIU Xiao, LIU Yong, JIN Bin, LU Yang, LU Jian. Microstructure evolution and mechanical properties of a SMATed Mg alloy under in situ SEM tensile testing [J]. Journal of Materials Science & Technology, 2017, 33(3): 224–230.CrossRefGoogle Scholar
  6. [6]
    XU Chuan, SHENG Guang, WANG Hao, YUAN Xin. Effect of high energy shot peening on the microstructure and mechanical properties of Mg/Ti joints [J]. Journal of Alloys and Compounds, 2017, 695: 1383–1391.CrossRefGoogle Scholar
  7. [7]
    XU Chuan, SHENG Guang, CAO Xue, YUAN Xin. Evolution of microstructure, mechanical properties and corrosion resistance of ultrasonic assisted welded-brazed Mg/Ti joint [J]. Journal of Materials Science & Technology, 2016, 32(12): 1253–1259.CrossRefGoogle Scholar
  8. [8]
    AZIZI A, ALIMARDAN H. Effect of welding temperature and duration on properties of 7075 Al to AZ31B Mg diffusion bonded joint [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(1): 85–92.CrossRefGoogle Scholar
  9. [9]
    LIU De, XIN Ren, ZHAO Long, HU Yong, ZHANG Jian. Evaluation of corrosion and wear resistance of friction stir welded ZK60 alloy [EB/OL]. [2017–04–13]. DOI: http://dx.doi.org/10.1080/13621718.2017.1286443.
  10. [10]
    XIE Rui, CHEN Xiao, LAI Zhi, LIU Lei, ZOU Gui, YAN Jiu, WANG Wen. Microstructure, mechanical properties and mechanism of ultrasound-assisted rapid transient liquid phase bonding of magnesium alloy in air [J]. Materials and Design, 2016, 91: 19–27.CrossRefGoogle Scholar
  11. [11]
    LIU Li, XU Rong. Investigation of the corrosion behaviour of laser-TIG hybrid welded Mg alloys [J]. Corrosion Science, 2010, 52(9): 3078–3085.CrossRefGoogle Scholar
  12. [12]
    GAO Ming, TANG Hai, CHEN Xiao, ZENG Xiao. High power fiber laser arc hybrid welding of AZ31B magnesium alloy [J]. Materials and Design, 2012, 42: 46–54.CrossRefGoogle Scholar
  13. [13]
    LIN Y T, WANG D P, WANG M C, ZHANG Y, HE Y Z. Effect of different pre-and post-weld heat treatments on microstructures and mechanical properties of variable polarity TIG welded AA2219 joints [J]. Science and Technology of Welding and Joining, 2016, 21(3): 234–241.CrossRefGoogle Scholar
  14. [14]
    WU Zhi, ZHANG Xin, SONG Xiao, MA Cheng, QI Yan, CHEN Xin. Microstructure and properties of welded joint for T92 ferritic heat resistant steel [EB/OL]. [2017–04–13]. DOI: http://doi.org/10.1016/j.jallcom.2017.01.156. Google Scholar
  15. [15]
    MIN Dong, SHEN Jun, LAI Shi, CHEN Jie. Effect of heat input on the microstructure and mechanical properties of tungsten inert gas arc butt-welded AZ61 magnesium alloy plates [J]. Materials Characterization, 2009, 60(12): 1583–1590.CrossRefGoogle Scholar
  16. [16]
    GOU Jun, TANG Ai, PAN Fu, SHE Jia, LUO Su, YE Jun, SHI Da, RASHAD M. Influence of Sn addition on mechanical properties of gas tungsten arc welded AM60 Mg alloy sheets [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(8), 2051–2057.CrossRefGoogle Scholar
  17. [17]
    QUAN Ya, CHEN Zhen, GONG Xiao, YU Zhao. CO2 laser beam welding of dissimilar magnesiumbased alloys [J]. Materials Science and Engineering A, 2008, 496(1): 45–51.CrossRefGoogle Scholar
  18. [18]
    XU Chuan, SHENG Guang, DENG Yong, YUAN Xin, TANG Kun. Microstructure and mechanical properties of tungsten inert gas welded-brazed Mg/Ti lap joints [J]. Science and Technology of Welding and Joining, 2014, 19(5): 443–450.CrossRefGoogle Scholar
  19. [19]
    HEILMAIER M, SAAGE H, MIRPURI J, ECKERT J, SCHULTZ L, SINGH P. Superposition of grain size and dispersion strengthening in ODS L12-(Al, Cr)3Ti [J]. Materials Science and Engineering A, 2002, 329: 106–111.CrossRefGoogle Scholar
  20. [20]
    ZHANG Zhe, CHEN Dao. Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength [J]. Scripta Materialia, 2006, 54(7): 1321–1326.CrossRefGoogle Scholar
  21. [21]
    HAN B Q, DUNAND D C. Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids [J]. Materials Science and Engineering A, 2000, 277: 297–304.CrossRefGoogle Scholar
  22. [22]
    XU Nan, SHEN Jun, XIE Wei, WANG Lin, WANG Dan, MIN Dong. Abnormal distribution of microhardness in tungsten inert gas arc butt-welded AZ61 magnesium alloy plates [J]. Materials Characterization, 2010, 61(7): 713–719.CrossRefGoogle Scholar
  23. [23]
    GAO Ming, MEI Shu, WANG Ze, LI Xiang, ZENG Xiao. Process and joint characterizations of laser-MIG hybrid welding of AZ31 magnesium alloy [J]. Journal of Materials Processing Technology, 2012, 212(6): 1338–1346.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina
  2. 2.The School of Robot Engineering and Mechanical-Electrical EngineeringChongqing University of Arts and SciencesChongqingChina

Personalised recommendations