Journal of Central South University

, Volume 25, Issue 6, pp 1350–1357 | Cite as

Corrosion behaviors and mechanism of electroless Ni-Cu-P/n-TiN composite coating

  • Hong-ming Zhou (周宏明)
  • Xue-yi Hu (胡雪仪)
  • Jian Li (李荐)


In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), electrochemical measurements, weight loss tests and Raman spectrometer were used to character the properties of the coating. As the Cu content increased from 7.3 wt% to 24.8 wt%, the corrosion current density of the Ni-Cu-P/n-TiN coating decreased from 10.80 to 4.34 μA. And the inclusion of Cu in Ni-P alloy resulted in refinement and less porosity in microstructure. The addition of TiN resulted in a slight decline in anti-corrosion property of the coating. As the mass loss test showed, Ni-24.8%Cu-P exhibited perfect corrosion resistance. Studies by Raman spectroscopy on coatings proved that Cu(II)3(PO4)(OH)3, Cu(OH)2 and CuO were examined while no compound of nickel was found, and Cu exhibited preferred corrosion in saline solution, providing cathodic protection to Ni alloy.

Key words

Cu content TiN content corrosion resistance corrosion mechanism cathodic protection 

化学镀 Ni-Cu-P/n-TiN 复合镀层的耐腐蚀行为与机理研究


本文以碱性柠檬酸为镀液,通过化学镀方法,制备了Ni-Cu-P/n-TiN 复合镀层。分别采用XRD、 SEM 和EDS 分析镀层的物相组成和组成形貌,采用电化学测试、失重试验、拉曼光谱仪来表征镀层 的耐腐蚀性能。实验结果表明:Cu 可细化Ni-Cu-P/n-TiN 胞状组织并减少其结构中的孔隙率,当 Cu 含量在7.3 wt%~24.8 wt% 时,复合镀层Ni-Cu-P/n-TiN 的自腐蚀电流从10.80 μA 下降至 4.34 μA; 而TiN 的掺杂会使复合镀层Ni-Cu-P/n-TiN 的耐腐蚀性能降低。失重试验表明,当Cu 含量为24.8wt% 时,镀层Ni-Cu-P 的耐腐蚀性能较好。通过拉曼曲线分析可知,复合镀层中Cu 表现出优先腐蚀机制, 形成了Cu(II)3(PO4)(OH)3、Cu(OH)2 和CuO 等Cu 金属的腐蚀产物,为镍合金提供了很好的阴极保护 作用。


Cu 含量 TiN 含量 耐腐蚀性能 腐蚀机理 阴极保护 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    ASHASSI-SORKHABI H, ES’HAGHI M. Corrosion resistance enhancement of electroless Ni-P coating by incorporation of ultrasonically dispersed diamond nanoparticles [J]. Corrosion Science, 2013, 77(12): 185–193.CrossRefGoogle Scholar
  2. [2]
    BALARAJU J N, MILLATH-JAHAN S, ANANDAN C, RAJAM K S. Studies on electroless Ni–W–P and Ni–W–Cu–P alloy coatings using chloride-based bath [J]. Surface and Coating Technology, 2006, 200(16): 4885–4890.CrossRefGoogle Scholar
  3. [3]
    ASHASSI-SORKHABI H, DOLATI H, PARVINI-AHMADI N, MANZOORI J. Electroless deposition of Ni–Cu–P alloy and study of the influences of some parameters on the properties of deposits [J]. Applied Suface Science, 2002, 185(3, 4): 155–160.CrossRefGoogle Scholar
  4. [4]
    ZHAO Q, LIU Y, ABEL E W. Effect of Cu content in electroless Ni–Cu–P–PTFE composite coatings on their anti-corrosion properties [J]. Materials Chemistry and Physics, 2004, 87(2, 3): 332–325.CrossRefGoogle Scholar
  5. [5]
    SYED A S, GANESA S V, CHANDRAN K, GURUVIAH S. Performance of electroless nickel-tungsten alloys [J]. Key Engineering Materials, 1991, 20–28: 1371–1376.CrossRefGoogle Scholar
  6. [6]
    SRINIVASAN K N, SELVAGANAPATHY T, MEENAKSHI R, JOHN S. Electroless deposition of nickel-cobaltphosphorus nano alloy [J]. Surface Engineering, 2013, 27(1): 65–70.CrossRefGoogle Scholar
  7. [7]
    CHASSING E, CHERCHAOUI M, SRHIRI A. Electrochemical investigation of the autocatalytic deposition of Ni–Cu–P alloys [J]. Journal of Applied Electrochemical, 1993, 23(11): 1169–1174.CrossRefGoogle Scholar
  8. [8]
    LIU Y, ZHAO Q. Study of electroless Ni-Cu-P coatings and their anti-corrosion properties [J]. Applied Surface Science, 2004, 228(1–4): 57–62.CrossRefGoogle Scholar
  9. [9]
    GULLA M. Metal finishing alloy: US, Patent 3764352 [P]. 1973.Google Scholar
  10. [10]
    ARMYANOV S, GEORGIEVA J, TACHEV D, VALOVA E, NYAGOLOVA N, MEHTA S, LEIBMAN D, RUFFINI A. Electroless deposition of Ni-Cu-P alloys in acidic solutions [J]. Electrochemical Solid-State Letters, 1999, 2(7): 323–325.CrossRefGoogle Scholar
  11. [11]
    GAO Y R, LIU C M, FU S L, LI H Z, SHU X, GAO Y H. Pretreatment process and corrosion resistance of electroless nickel plating on ZM6 magnesium alloy [J]. Journal of Central South University: Science and Technology, 2011, 42(5): 1248–1253. (in Chinese)Google Scholar
  12. [12]
    SUN W C, TAN M F, LU J H, ZHANG L, ZHOU Q. Corrosion and oxidation resistance of electroless Ni-P-Al2O3 composite coatings on carbon steel [J]. Applied Mechanics and Materials, 2010, 34–35: 831–835.CrossRefGoogle Scholar
  13. [13]
    CHI G J, YAO S W, FAN J, ZHANG Z H, REN G X. Study on photocatalytic antibacterial performance of Ni/TiO2 composite deposits [J]. Material Science and Technology, 2004, 12(1): 52–56.Google Scholar
  14. [14]
    LIU Y Y, YU J, HUANG H, XU B H, LIU X L, GAO Y, DONG X L. Synthesis and tribological behavior of electroless Ni-P-WC nanocomposite coatings [J]. Surface and Coating Technology, 2007, 201(16, 17): 7246–7251.CrossRefGoogle Scholar
  15. [15]
    SHI L, SUN C, GAO P, ZHOU F, LIU W. Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating [J]. Applied Surface Science, 2006, 252(10): 3591–3599.CrossRefGoogle Scholar
  16. [16]
    BENEA L, BONORA P L, BORELLO A, MARTELLI S. Effect of SiC size dimensions on the corrosion wear resistance of the electrodeposited composite coating [J]. Wear, 2002, 53(1): 23–29.Google Scholar
  17. [17]
    SAHOO P, DAS S K. Tribology of electroless nickel coatings–A review [J]. Materials & Design, 2011, 32: 1760–1775.CrossRefGoogle Scholar
  18. [18]
    CHEN C K, FENG H M, LIN H C, HONG M H. The effect of heat treatment on the microstructure of electroless Ni-P coatings containing SiC particles [J]. Thin Solid Films, 2002, 416(1): 31–37.CrossRefGoogle Scholar
  19. [19]
    ZHOU H M, HU X Y, LI J. Effect of nano-Al2O3 on corrosion resistance of Ni-P composite coating by electro-brush plating [J]. Surface Technology, 2017, 46(7): 28–32. (in Chinese)Google Scholar
  20. [20]
    REZRAZI M, DOCHE M L, BERCOT P, HIHN J Y. Au-PTFE composite coatings elaborated under ultrasonic stirring [J]. Surface and Coating Technology, 2005, 192(1): 124–130.CrossRefGoogle Scholar
  21. [21]
    VIDRICH G, CASTAGNET J F, FERKEL H. Dispersion behavior of Al2O3 and SiO2 nanoparticles in nickel sulfamate plating baths of different compositions [J]. Journal of Electrochemical Society, 2005,152(5): 294–297.CrossRefGoogle Scholar
  22. [22]
    ALIREZAEI S, MONIRVAGHEFI S M, SALEHI M, SAARCHI A. Wear behavior of Ni-P and Ni-P-Al2O3 electroless coatings [J]. Wear, 2007, 262(7, 8): 978–985.CrossRefGoogle Scholar
  23. [23]
    SONG Y W, SHAN D Y, CHEN R S, HAN E N. Study on electroless Ni-P-ZrO2 composite coatings on AZ91D magnesium alloys [J]. Surface Engineering, 2007, 23(5): 334–338.CrossRefGoogle Scholar
  24. [24]
    SZCZYGIEL B, TURKIEWICZ A, SERAFINCZUK J. Surface morphology and structure of Ni-P, Ni-P-ZrO2, Ni-W-P, Ni-W-P-ZrO2 coatings deposited by electroless method [J]. Surface and Coatings Technology, 2008, 20(9): 1904–1910.CrossRefGoogle Scholar
  25. [25]
    APACHITEI I, DUSZCZYK J, KATEGEMAN L. Electroless Ni-P composite coatings: The effect of heat treatment on the microhardness of substrate and coating [J]. Scripta Materialia, 1998, 38(9): 1347–1353.CrossRefGoogle Scholar
  26. [26]
    HUANG X, WU Y, QIAN L. The tribological behavior of electroless Ni-P-SiC (nanometer particles) composite coatings [J]. Plating and Surface Finishing, 2004, 91(7): 46–48.Google Scholar
  27. [27]
    ZHAO F G, HUANG H, WANG F. Texture and mechanical property of brush electroplated (Ni-P)-TiN nanoparticles composite coating [J]. Plating and Finishing, 2010, 32(9): 1–4. (in Chinese)Google Scholar
  28. [28]
    YU L H, HUANG W G, ZHAO X. Study on Ni-P-nanoTiN electroless composite coating [J]. Surface Technology, 2009, 38(5): 17–19.Google Scholar
  29. [29]
    LAI C, LI X M, ZOU L K, CHEN Q, XIE B, LI Y L, LI XL, TAO Z. Corrosion of porous silicon in tetramethylammonium hydroxide solution [J]. Corrosion Science, 2014, 85(4): 471–476.CrossRefGoogle Scholar
  30. [30]
    MAFI I R, DEHGHANIAN C. Studying the effects of the addition of TiN nanoparticles to Ni-P electroless coatings [J]. Applied Surface Science, 2011, 258(5): 1876–1880.CrossRefGoogle Scholar
  31. [31]
    AAL A A, ALY M S. Electroless Ni-Cu-P plating onto open cell stainless steel foam [J]. Applied Surface Science, 2009, 255(13): 6652–6655.Google Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Hunan Province Zhengyuan Energy Storage Materials and Devices ResearchChangshaChina

Personalised recommendations