Advertisement

Journal of Central South University

, Volume 25, Issue 6, pp 1285–1294 | Cite as

Effect of ultrasonic field on microstructure and mechanical properties of as-cast 7085 aluminum alloy

  • Hao Zou (邹浩)
  • Qing-lin Pan (潘清林)
  • Yun-jia Shi (史运嘉)
  • Jing Chen (陈婧)
  • Hao Xiang (向浩)
  • Rui-shi Li (李瑞师)
  • Hang Li (李航)
Article
  • 31 Downloads

Abstract

The effect of an ultrasonic field on the microstructure and mechanical properties of 7085 aluminum alloy during solidification was investigated by optical microscopy, Vickers hardness test, tensile test, scanning electron microscopy (SEM) with energy dispersive X-ray spectrometry, and electron probe micro-analysis (EPMA). The results showed that the grains of aluminum alloy were significantly refined and secondary phases were dispersed and distributed uniformly at the grain boundaries, due to ultrasonic treatment (UST). By EPMA, it was observed that the distribution of the main elements Al, Zn, Mg and Cu was more homogeneous in alloys with UST, than in alloys without UST. The mechanical properties of the aluminum alloy also significantly improved. As demonstrated by the SEM fractography of the fractured faces of several castings, fracture of the unrefined specimens occurred in a brittle manner, whereas the cracks of the refined specimens showed quasi-cleavage fracture.

Key words

ultrasonic treatment grain refinement microstructure secondary phases 

超声场对7085 铝合金微观组织和力学性能的影响

摘要

本文采用金相显微分析(OM)、维氏硬度测试、扫描电子显微分析(SEM)、拉伸性能测试和电子 探针分析(EMAP)等方法研究熔铸过程中导入超声场对7085 铝合金铸锭的微观组织、力学性能的影 响。结果表明,在超声处理(UST)的作用下,铝合金的晶粒显著细化,同时第二相也更加分散。从 EPMA 的结果中观察到,经过超声处理合金中的Al、Zn、Mg 和Cu 元素分布更加均匀。铝合金的力 学性能也极大增强。从拉伸断口图中得出,常规铸锭试样的断裂方式是脆性断裂,而超声铸锭试样是 以准解理的方式断裂的。

关键词

超声处理 晶粒细化 微观组织 第二相 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    LAI Jian, JIANG Rong, LIU Hua, DUN Xiao, LI Yan, LI Xiao. Influence of cerium on microstructures and mechanical properties of Al–Zn–Mg–Cu alloys [J]. Journal of Central South University, 2012, 19(4): 869–874.CrossRefGoogle Scholar
  2. [2]
    LI Xin, CAI Qi, ZHAO Bing, XIAO Ya, LI Bing. Effect of nano TiN/Ti refiner addition content on the microstructure and properties of as-cast Al-Zn-Mg-Cu alloy [J]. Journal of Alloys and Compounds, 2016, 675: 201–210.CrossRefGoogle Scholar
  3. [3]
    YU Hong, WANG Ming, JIA Yan, XIAO Zhu, CHEN Chang, LEI Qian, LI Zhou, CHEN Wei, ZHANG Hao, WANG Yang, CAI Can. High strength and large ductility in spray-deposited Al–Zn–Mg–Cu alloys [J]. Journal of Alloys and Compounds, 2014, 601: 120–125.CrossRefGoogle Scholar
  4. [4]
    MOHANTY P S, GRUZLESKI J E. Mechanism of grain refinement in aluminium [J]. Acta Metallurgica et Materialia, 1995, 43(5): 2001–2012.CrossRefGoogle Scholar
  5. [5]
    ZHANG Bei, CUI Jian, LU Gui. Effects of low-frequency electromagnetic field on microstructures and macrosegregation of continuous casting 7075 aluminum alloy [J]. Materials Science and Engineering A, 2003, 355(1, 2): 325–330.CrossRefGoogle Scholar
  6. [6]
    HUNG J C, LIN C C. Investigations on the material property changes of ultrasonic-vibration assisted aluminum alloy upsetting [J]. Materials & Design, 2013, 45: 412–420.CrossRefGoogle Scholar
  7. [7]
    ZHANG Li, YU Jun, ZHANG Xiao. Effect of ultrasonic power and casting speed on solidification structure of 7050 aluminum alloy ingot in ultrasonic field [J]. Journal of Central South University, 2010, 17(3): 431–436.MathSciNetCrossRefGoogle Scholar
  8. [8]
    ZHAO Jun, YU Kun, XUE Xin, MAO Da, LI Jian. Effects of ultrasonic treatment on the tensile properties and microstructure of twin roll casting Mg–3%Al–1%Zn–0.8%Ce–0.3%Mn (wt%) alloy strips [J]. Journal of Alloys & Compounds, 2011, 509(509): 8607–8613.CrossRefGoogle Scholar
  9. [9]
    ESKIN G I, ESKIN D G. Ultrasonic treatment of light alloy melts [M]. Florida: CRC Press, 2014.CrossRefGoogle Scholar
  10. [10]
    YASUDA K, SAIKI Y, KUBO T, KUWABARA M, YANG J. Influence of high-power ultrasonic irradiation on primary nucleation process during solidification [J]. Japanese Journal of Applied Physics B, 2007, 46(7): 4939–4944.CrossRefGoogle Scholar
  11. [11]
    JIANG Ri, LI Xiao, ZHANG Min. Investigation on the mechanism of grain refinement in aluminum alloy solidified under ultrasonic vibration [J]. Metals and Materials International, 2015, 21(1): 104–108.CrossRefGoogle Scholar
  12. [12]
    XU Han, JIAN Xiao, MEEK T T, HAN Qing. Degassing of molten aluminum A356 alloy using ultrasonic vibration [J]. Materials Letters, 2004, 58(29): 3669–3673.CrossRefGoogle Scholar
  13. [13]
    SHI Yun, PAN Qing, LI Meng, LIU Zhi, HUANG Zhi. Microstructural evolution during homogenization of DC cast 7085 aluminum alloy [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(11): 3560–3568.CrossRefGoogle Scholar
  14. [14]
    ESKIN G I, ESKIN D G. Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt [J]. Ultrasonics Sonochemistry, 2003, 10(4, 5): 297–301.CrossRefGoogle Scholar
  15. [15]
    ESKIN G, PIMENOV Y P, MAKAROV G. Effect of cavitation melt treatment on the structure refinement and property improvement in cast and deformed hypereutectic Al-Si alloys [C]//Materials Science Forum, 1997, 242: 65–70.CrossRefGoogle Scholar
  16. [16]
    TZANAKIS I, LEBON G S B, ESKIN D G, PERICLEOUS K. Investigation of the factors influencing cavitation intensity during the ultrasonic treatment of molten aluminium [J]. Materials & Design, 2016, 90: 979–983.CrossRefGoogle Scholar
  17. [17]
    ATAMANENKO T V, ESKIN D G, ZHANG L, KATGERMAN L. Criteria of grain refinement induced by ultrasonic melt treatment of aluminum alloys containing Zr and Ti [J]. Metallurgical and Materials Transactions A, 2010, 41(8): 2056–2066.CrossRefGoogle Scholar
  18. [18]
    WANG Gui, DARGUSCH M, QIAN M, ESKIN D, STJOHN D H. The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al–2Cu alloy [J]. Journal of Crystal Growth, 2014, 408: 119–124.CrossRefGoogle Scholar
  19. [19]
    WANG Feng, ESKIN D, CONNOLLEY T, MI Jia. Effect of ultrasonic melt treatment on the refinement of primary Al3Ti intermetallic in an Al–0.4Ti alloy [J]. Journal of Crystal Growth, 2016, 435: 24–30.CrossRefGoogle Scholar
  20. [20]
    STRAUSS S. The temperature dependence of the viscosity of liquid metals [J]. Nuclear Sci & Eng, 1962, 18(2): 279–285.Google Scholar
  21. [21]
    SU Hai, GAO Wen, FENG Zhao, LU Zheng. Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites [J]. Materials & Design, 2012, 36: 590–596.CrossRefGoogle Scholar
  22. [22]
    SHI Chen, MAO Da, FU Zong. Effect of electromagnetic and ultrasonic cast rolling on microstructure and properties of 1050 aluminum substrate for presensitizedplate [J]. Journal of Central South University, 2015, 22(2): 422–429.CrossRefGoogle Scholar
  23. [23]
    SEYED EBRAHIMI S H, EMAMY M. Effects of Al–5Ti–1B and Al–5Zr master alloys on the structure, hardness and tensile properties of a highly alloyed aluminum alloy [J]. Materials & Design, 2010, 31(1): 200–209.CrossRefGoogle Scholar
  24. [24]
    KOBAYASHI T. Strength and fracture of aluminum alloys [J]. Materials Science and Engineering A, 2000, 280(1): 8–16.CrossRefGoogle Scholar
  25. [25]
    DIETER G E, BACON D J. Mechanical metallurgy [M]. New York: McGraw-Hill, 1986.Google Scholar
  26. [26]
    JIANG Wen, FAN Zi, CHEN Xu, WANG Ben, WU He. Combined effects of mechanical vibration and wall thickness on microstructure and mechanical properties of A356 aluminum alloy produced by expendable pattern shell casting [J]. Materials Science and Engineering A, 2014, 619: 228–237.CrossRefGoogle Scholar
  27. [27]
    YAN Jiu, XU Zhi, SHI Lei, MA Xing, YANG Shi. Ultrasonic assisted fabrication of particle reinforced bonds joining aluminum metal matrix composites [J]. Materials & Design, 2011, 32(1): 343–347.CrossRefGoogle Scholar
  28. [28]
    MONTALBA C, ESKIN D G, MIRANDA A, ROJAS D, RAMAM K. Effect of electroceramic particles on damping behaviour of aluminium hybrid composites produced by ultrasonic cavitation and mechanical stirring [J]. Materials & Design, 2015, 84: 110–117.CrossRefGoogle Scholar
  29. [29]
    LI Wen, PAN Qing, XIAO Yan, HE Yun, LIU Xiao. Microstructural evolution of ultra-high strength Al–Zn–Cu–Mg–Zr alloy containing Sc during homogenization [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(10): 2127–2133.CrossRefGoogle Scholar
  30. [30]
    WANG Q G. Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357 [J]. Metallurgical and Materials Transactions A, 2003, 34(12): 2887–2899.CrossRefGoogle Scholar
  31. [31]
    TAHSINI S M, HALVAEE A, KHOSRAVI H. Correlation between microstructural features and tensile strength for friction welded joints of AA-7005 aluminum alloy [J]. Journal of Central South University, 2016, 23(8): 1839–1846.CrossRefGoogle Scholar
  32. [32]
    BAI Y, ZHAO H. Tensile properties and fracture behavior of partial squeeze added slow shot die-cast A356 aluminum alloy [J]. Materials & Design, 2010, 31(9): 4237–4243.CrossRefGoogle Scholar
  33. [33]
    LI Y, LI R. Effect of the casting process variables on microporosity and mechanical properties in an investment cast aluminium alloy [J]. Science and Technology of Advanced Materials, 2001, 2(1): 277–280.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hao Zou (邹浩)
    • 1
  • Qing-lin Pan (潘清林)
    • 1
    • 2
  • Yun-jia Shi (史运嘉)
    • 1
  • Jing Chen (陈婧)
    • 1
  • Hao Xiang (向浩)
    • 1
  • Rui-shi Li (李瑞师)
    • 2
  • Hang Li (李航)
    • 2
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Suntown Technology Group Co., LtdChangshaChina

Personalised recommendations