Journal of Central South University

, Volume 25, Issue 6, pp 1263–1273 | Cite as

Microstructure and mechanical properties of strontium-modified ADC12 alloy processed by heat treatment

  • Zhi-xiang Huang (黄志翔)
  • Hong Yan (闫洪)
  • Zhi-wei Wang (王志伟)


The effects of heat treatment and strontium (Sr) addition on the microstructure and mechanical properties of ADC12 alloys were investigated, and two-stage solution treatment was introduced. The results indicated that the addition of Sr obviously refined the microstructure of ADC12 alloys. When 0.05 wt% Sr was added into the alloy, the eutectic Si phase was fully modified into fine fibrous structure; α-Al and β-Al5FeSi phases were best refined; and the eutectic Al2Cu phase was modified into block-like Al2Cu phase that continuously distributed at the grain boundary. The ultimate tensile strength (UTS) (270.63 MPa) and elongation (3.19%) were increased by 51.2% and 73.4% respectively compared with unmodified alloys. After the two-stage solution treatment (500 °C, 6 h+520 °C, 4 h), for 0.05 wt% Sr modified ADC12 alloys, the Si phases transformed into fine particle structure and Al2Cu phases were fully dissolved. The peak hardness value of the alloys processed by the two-stage solution treatment was increased by 8.3% and 6.8% respectively compared to solution treatment at 500 °C and 520 °C. After the aging treatment (175 °C, 7 h), the hardness and UTS were increased by 38.73% and 13.96% respectively when compared with the unmodified alloy.

Key words

ADC12 alloy strontium heat treatment microstructure mechanical properties 

锶变质及热处理对ADC12 合金显微组织及力学性能的影响


本文研究了锶(Sr)变质、单级及二级固溶处理以及时效处理对ADC12 合金显微组织及力学 性能的影响。结果表明,Sr 的添加可以显著改善ADC12 合金的显微组织。当Sr 添加量为0.05 wt%时, 共晶硅相完全转变为细小纤维状,α-Al 相和β-Al5FeSi 相得到了较佳的细化效果,同时Al2Cu 相转变 为块状,并连续分布在晶界处;其极限抗拉强度(270.63 MPa)和伸长率(3.19%)较基体合金分别提高了 51.2%和73.4%。经二级固溶处理(500 °C,6 h+520 °C,4 h)后,共晶硅相转变为细小颗粒状,Al2Cu 相完全溶解;其峰值硬度较500 °C 和520 °C 下单级固溶处理分别提高了8.3%和6.8%。时效处理 (175 °C,7 h)后,其硬度和极限抗拉强度较基体合金分别提高了38.73%和13.96%。


ADC12 合金 锶 热处理 显微组织 力学性能 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    LI Zheng-hua, YAN Hong. Modification of primary α-Al, eutectic silicon and β-Al5FeSi phases in as-cast AlSi10Cu3 alloys with (La+Yb) addition [J]. Journal of Rare Earths, 2015, 76(9): 995–1003. DOI: 10.1016/S1002-0721(14)60517-2.CrossRefGoogle Scholar
  2. [2]
    HU Zhi, YAN Hong, RAO Yuan-sheng. Effects of samarium addition on microstructure and mechanical properties of as-cast Al-Si-Cu alloy [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(11): 3228–3234. DOI: 10.1016/S1003-6326(13)62857-5.CrossRefGoogle Scholar
  3. [3]
    JIANG Wen, FAN Zi, DAI Yu, LI Chi. Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy [J]. Materials Science and Engineering A, 2014, 597(3): 237–244. DOI: 10.1016/j.msea.2014.01.009.CrossRefGoogle Scholar
  4. [4]
    TIMPEL M, WANDERKA N, SCHLESIGER R, YAMAMOTO T, ISHEIM D, SCHMI TZ. Sr-Al-Si co-segregated regions in eutectic Si phase of Sr-modified Al-10Si alloy [J]. Ultramicroscopy, 2013, 132(3): 216–221. DOI: 10.1016/j.ultramic.2012.10.006.CrossRefGoogle Scholar
  5. [5]
    TEBIB M, SAMUEL A M, AJERSCH F, CHEN X G. Effect of P and Sr additions on the microstructure of hypereutectic Al-15Si-14Mg-4Cu alloy [J]. Materials Characterization, 2014, 89(3): 112–123. DOI: 10.1016/j.matchar.2014.01.005.CrossRefGoogle Scholar
  6. [6]
    YAN Hong, CHEN Fan, LI Zheng. Microstructure and mechanical properties of AlSi10Cu3 alloy with (La+Yb) addition processed by heat treatment [J]. Journal of Rare Earths, 2016, 34(9): 938–944. DOI: 10.1016/S1002-0721(16)60118-7.CrossRefGoogle Scholar
  7. [7]
    WU Yi, WANG Ming, LI Zhou, XIA Fu, XIA Chen, LEI Qian, YU Hong-Chun. Effects of pre-aging treatment on subsequent artificial aging characteristics of Al-3.95Cu-(1.32Mg)-0.52Mn-0.11Zr alloys [J]. Journal of Central South University, 2015, 22(1): 1–7. DOI: 10.1007/s11771-015-2487-9.CrossRefGoogle Scholar
  8. [8]
    HUANG Yuan, LI Qing, XIAO Zheng, LIU Yu, ZHANG Huan. Influence of precipitation on recrystallization texture of AA3104 aluminum alloy [J]. Journal of Central South University, 2015, 22(10): 3683–3688. DOI: 10.1007/s11771-015-2910-2.CrossRefGoogle Scholar
  9. [9]
    ESPINOZA-CUADRA J, GALLEGOS-ACEVEDO P, MANCHA-MOLINAR H, PICADO A. Effect of Sr and solidification conditions on characteristics of intermetallic in Al–Si 319 industrial alloys [J]. Materials & Design, 2010, 31(1): 343–356. DOI: 10.1016/j.matdes.2009.06.017.CrossRefGoogle Scholar
  10. [10]
    FARAHANY S, OURDJINI A, IDRSI M H, SHABESTARI S G. Evaluation of the effect of Bi, Sb, Sr and cooling condition on eutectic phases in an Al–Si–Cu alloy (ADC12) by in situ thermal analysis [J]. Thermochimica Acta, 2013, 559(5): 59–68. DOI: 10.1016/j.tca.2013.02.024.CrossRefGoogle Scholar
  11. [11]
    LUNA I A, MOLINAR H M, ROMÁN M J C, BOCARDO J C E, TREJO M H. Improvement of the tensile properties of an Al-Si-Cu-Mg aluminum industrial alloy by using multi-stage solution treatments [J]. Materials Science & Engineering A, 2013, 561(2): 1–6. DOI: 10.1016/j.msea. 2012.10.064.CrossRefGoogle Scholar
  12. [12]
    SOKOLOWSKI J H, DJURDJEVIC M B, KIERKUS C A, NORTHWOOD D O. Improvement of 319 aluminum alloy casting durability by high temperature solution treatment [J]. Journal of Materials Processing Technology, 2001, 109(1): 174–180. DOI: 10.1016/S0924-0136(00)00793-7.CrossRefGoogle Scholar
  13. [13]
    SHIN S S, KIM E S, YEOM G Y, LEE J C. Modification effect of Sr on the microstructures and mechanical properties of Al–10.5Si–2.0Cu recycled alloy for die casting [J]. Materials Science & Engineering A, 2012, 532(1): 151–157. DOI: 10.1016/j.msea.2011.10.076.CrossRefGoogle Scholar
  14. [14]
    HUME-ROTHERY W, MABBOTT G W. The freezing points, melting points, and solid solubility limits of the alloys of silver and copper with the elements of the B sub-groups [J]. Philosophical Transactions of the Royal Society A—Mathematical Physical & Engineering Sciences, 1934, 233(3): 1–97.Google Scholar
  15. [15]
    LU S Z, HELLAWELL A. The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning [J]. Metallurgical & Materials Transactions A, 1987, 18(10): 1721–1733. DOI: 10.1007/BF02646204.CrossRefGoogle Scholar
  16. [16]
    MOHAMED A M A, SAMUEL F H, KAHTANI S A. Influence of Mg and solution treatment on the occurrence of incipient melting in Al–Si–Cu–Mg cast alloys [J]. Materials Science & Engineering A, 2012, 543(5): 22–34. DOI: 10.1016/j.msea. 2012.02.032.CrossRefGoogle Scholar
  17. [17]
    LI Z, SAMUEL A M, SAMUEL F H, RAVINDRAN C, VALTIERRA S. Effect of alloying elements on the segregation and dissolution of CuAl2 phase in Al-Si-Cu 319 alloys [J]. Journal of Materials Science, 2003, 38(6): 1203–1218. DOI: 10.1023/A:1022857703995.CrossRefGoogle Scholar
  18. [18]
    JIANG Wen, FAN Zi, CHEN Xu, WANG Ben, WU He. Combined effects of mechanical vibration and wall thickness on microstructure and mechanical properties of A356 aluminum alloy produced by expendable pattern shell casting [J]. Materials Science & Engineering A, 2014, 619(12): 228–237. DOI: 10.1016/j.msea. 2014.09.102.CrossRefGoogle Scholar
  19. [19]
    YAN Hong, HUANG Zhi, QIU Hong. Microstructure and mechanical properties of CNTs/A356 nanocomposites fabricated by high-intensity ultrasonic processing [J]. Metallurgical & Materials Transactions A, 2017, 48(2): 910–918. DOI: 10.1007/s11661-016-3872-1.CrossRefGoogle Scholar
  20. [20]
    SAMUEL F H. Incipient melting of Al5Mg8Si6Cu2 and Al2Cu intermetallics in unmodified and strontium-modified Al-Si-Cu-Mg (319) alloys during solution treatment [J]. Journal of Materials Science, 1998, 33(9): 2283–2297. DOI: 10.1023/A:1004383203476.CrossRefGoogle Scholar
  21. [21]
    SJÖLANDER E, SEIFEDDINE S. Artificial ageing of Al–Si–Cu–Mg casting alloys [J]. Materials Science & Engineering A, 2011, 528(24): 7402–7409. DOI: 10.1016/j.msea.2011.06.036.CrossRefGoogle Scholar
  22. [22]
    MA Z, SAMUEL E, MOHAMED A M A, SAMUEL A M, SAMUEL F H, DOTY H W. Influence of aging treatments and alloying additives on the hardness of Al–11Si–2.5Cu–Mg alloys [J]. Materials & Design, 2010, 31(8): 3791–3803. DOI: 10.1016/j.matdes.2010.03.026.CrossRefGoogle Scholar
  23. [23]
    HAN Y M, SAMUEL A M, SAMUEL F H, VALTIERRA S, DOTY H W. Effect of solution treatment type on the dissolution of copper phases in Al-Si-Cu-Mg type alloys [J]. Transactions of the American Foundrymen's Society, 2008, 116: 79–90.Google Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical and Electrical EngineeringNanchang UniversityNanchangChina
  2. 2.Key Laboratory of Light Alloy Preparation & Processing in Nanchang CityNanchangChina

Personalised recommendations