Skip to main content
Log in

Sulfidation roasting of lead and zinc carbonate with sulphur by temperature gradient method

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to enhance the lead and zinc recovery from the refractory Pb-Zn oxide ore, a new technology was developed based on sulfidation roasting with sulphur by temperature gradient method. The solid-liquid reaction system was established and the sulfidation thermodynamics of lead and zinc carbonate was calculated with the software HSC 5.0. The effects of roasting temperature, molar ratio of sulphur to lead and zinc carbonate and reaction time in the first step roasting, and holding temperature and time in the second roasting on the sulfidation extent were studied at a laboratory-scale. The experimental results show that the sulfidation extents of lead and zinc are 96.50% and 97.29% under the optimal conditions, respectively, and the artificial galena, sphalerite and wurtzite were formed. By the novel sulfidizing process, it is expected that the sulphides can be recovered by conventional flotation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BALARINI J C, POLLI L O, MIRANDA T L S, CASTRO R M Z, SALUM A. Importance of roasted sulphide concentrates characterization in the hydrometallurgical extraction of zinc [J]. Minerals Engineering, 2008, 21(1): 100–110.

    Article  Google Scholar 

  2. SOUZA A D, PINA P S, LEAO V A. Bioleaching and chemical leaching as an integrated process in the zinc industry [J]. Minerals Engineering, 2007, 20(6): 591–599.

    Article  Google Scholar 

  3. PENG Rong-qiu, REN Hong-jiu, ZHANG Xun-peng. Metallurgy of lead and zinc [M]. Beijing: Science Press, 2003. (in Chinese)

    Google Scholar 

  4. EJTEMAEI M, IRANNAJAD M, GHARABAGHI M. Influence of important factors on flotation of zinc oxide mineral using cationic, anionic and mixed (cationic/anionic) collectors [J]. Minerals Engineering, 2011, 24(13): 1402–1408.

    Article  Google Scholar 

  5. HOSSEINI S, FORSSBERG E. Studies on selective flotation of smithsonite from silicate minerals using mercaptans and one stage desliming [J]. Mineral Processing and Extractive Metallurgy, 2011, 120(2): 79–84.

    Article  Google Scholar 

  6. KIERSZNICKI T, MAJEWSKI J, MZYK J. 5-alkylsalicylaldoximes as collectors in flotation of sphalerite, smithsonite and dolomite in a Hallimond tube [J]. International Journal of Mineral Processing, 1981, 7(4): 311–318.

    Article  Google Scholar 

  7. FA Ke-qing, MILLER J D, JIANG Tao, LI Guang-hui. Sulphidization flotation for recovery of lead and zinc from oxide-sulfide ores [J]. Transactions of Nonferrous Metal Society of China, 2005, 15(5): 56–79.

    Google Scholar 

  8. QIU X, LI S, DENG H, HE X. Study of heating surface surface sulfurized flotation dynamics of smithsonite [J]. Nonferrous Metals Mineral Processing, 2007, 1: 6–10.

    Google Scholar 

  9. SADOWSKI Z, POLOWCZYK I. Agglomerate flotation of fine oxide particles [J]. International Journal of Mineral Processing, 2004, 74(1): 85–90.

    Article  Google Scholar 

  10. QUARESIMA S, SIVADASAN K, MARABINI A, BARBARO M, SOMASUNDARAN P. Behavior of colloidal suspensions of zinc carbonate in the presence of copolymers designed for selective flocculation [J]. Journal of Colloid and Interface Science, 1991, 144(1): 159–164.

    Article  Google Scholar 

  11. HOSSEINI S H, FORSSBER E. Adsorption studies of smithsonite flotation using dodecylamine and oleic acid [J]. Minerals and Metallurgical Processing, 2006, 23(2): 87–96.

    Google Scholar 

  12. KLIMPEL R R, LEONARD D E, MCCANN G D. Sulfonated and carboxylate collector compositions useful in the flotation of minerals: US, 5171427 [P]. 1992-12-15.

  13. BODAS M. Hydrometallurgical treatment of zinc silicate ore from thailand [J]. Hydrometallurgy, 1996, 40(1): 37–49.

    Article  Google Scholar 

  14. SAFARI V, ARZPEYMA G, RASHCHI F, MOSTOUFI N. A shrinking particle-shrinking core model for leaching of a zinc ore containing silica [J]. International Journal of Mineral Processing, 2009, 93(1): 79–83.

    Article  Google Scholar 

  15. ZHAO Y, STANFORTH R. Production of Zn powder by alkaline treatment of smithsonite Zn-Pb ores [J]. Hydrometallurgy, 2000, 56(2): 237–249.

    Article  Google Scholar 

  16. ESPIARI S, RASHCHI F, SADRNEZHAAD S. Hydrometallurgical treatment of tailings with high zinc content [J]. Hydrometallurgy, 2006, 82(1): 54–62.

    Article  Google Scholar 

  17. JU S H, TANG M T, YANG S H, LI Y N. Dissolution kinetics of smithsonite ore in ammonium chloride solution [J]. Hydrometallurgy, 2005, 80(1): 67–74.

    Article  Google Scholar 

  18. LI M, PENG B, CHAI L Y, PENG N, YAN H, HOU D K. Recovery of iron from zinc leaching residue by selective reduction roasting with carbon [J]. Journal of Hazardous Materials, 2012, 237(1): 323–330.

    Article  Google Scholar 

  19. HERRERA R, SOTILLO F, FUERSTENAU D. Effect of sodium sulfide additions on the pulp potential and amyl xanthate flotation of cerussite and galena [J]. International Journal of Mineral Processing, 1999, 55(3): 157–170.

    Article  Google Scholar 

  20. HERRERA R, SOTILLO F, FUERSTENAU D. Amyl xanthate uptake by natural and sulfide-treated cerussite and galena [J]. International Journal of Mineral Processing, 1998, 55(2): 113–128.

    Article  Google Scholar 

  21. WANG J, ZHANG Q, SAITO F. Improvement in the floatability of CuO by dry grinding with sulphur [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302(1): 494–497.

    Article  Google Scholar 

  22. WANG J, LU J, ZHANG Q, SAITO F. Mechanochemical sulfidization of nonferrous metal oxides by grinding with sulfur and iron [J]. Industrial and Engineering Chemistry Research, 2003, 42(23): 5813–5818.

    Article  Google Scholar 

  23. CHAI L Y, LIANG Y J, KE Y, MIN Y B, TANG C J, ZHANG H J, XIE X D, YUAN C Y. Mechano-chemical sulfidization of zinc oxide by grinding with sulfur and reductive additives [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4): 1129–1138.

    Article  Google Scholar 

  24. LIANG Y J, CHAI L Y, LIU H, MIN X B, MAHMOOD Q, ZHANG H J, KE Y. Hydrothermal sulfidation of zinc-containing neutralization sludge for zinc recovery and stabilization [J]. Minerals Engineering, 2012, 25(1): 14–19.

    Article  Google Scholar 

  25. MIN X B, YUAN C Y, CHAI L Y, LIANG Y J, ZHANG H J, XIE X D, KE Y. Hydrothermal modification to improve the floatability of ZnS crystals [J]. Minerals Engineering, 2013, 40: 16–23.

    Article  Google Scholar 

  26. LIANG Y J, CHAI L Y, MIN X B, TANG C J, ZHANG H J, KE Y, XIE X D. Hydrothermal sulfidation and floatation treatment of heavy-metal-containing sludge for recovery and stabilization [J]. Journal of Hazardous Materials, 2012, 217: 307–314.

    Article  Google Scholar 

  27. ZHANG Hai-bin. Chemical phase analysis of ore and industrial product [M]. Beijing: Metallurgical Industry Press, 1992. (in Chinese)

    Google Scholar 

  28. STEGER H. Chemical phase-analysis of ores and rocks: A review of methods [J]. Talanta, 1976, 23(2): 81–87.

    Article  Google Scholar 

  29. ZHAO X, LEE J Y, KIM C R, HEO J, SHIN C M, LEEM J Y, RYU H, CHANG J H, LEE H C, JUNG W G. Dependence of the properties of hydrothermally grown ZnO on precursor concentration [J]. Physica E: Low-dimensional Systems and Nanostructures, 2009, 41(8): 1423–1426.

    Article  Google Scholar 

  30. LI G H, SHI T M, RAO M J, JIANG T, ZHANG Y. Beneficiation of nickeliferous laterite by reduction roasting in the presence of sodium sulfate [J]. Minerals Engineering, 2012, 32: 19–26.

    Article  Google Scholar 

  31. GERMAN R M, SURI P, PARK S J. Review: Liquid phase sintering [J]. Journal of Materials Science, 2009, 44(1): 1–39.

    Article  Google Scholar 

  32. LI Y, WANG J K, WEI C, LIU C X, JIANG J B, WANG F. Sulfidation roasting of low grade lead-zinc oxide ore with elemental sulfur [J]. Minerals Engineering, 2010, 23: 563–566.

    Article  MATH  Google Scholar 

  33. MORGAN D, WARNE S S J, WARRINGTON S, NANCARROW P. Thermal decomposition reactions of caledonite and their products [J]. Mineralogical Magazine, 1986, 50(357): 521–526.

    Article  Google Scholar 

  34. MALINOWSKI C, MALINOWSKA K, MALECKI S. Analysis of the chemical processes occurring in the system PbSO4-ZnS [J]. Thermochimica Acta, 1996, 275(1): 117–130.

    Article  Google Scholar 

  35. NAPIER-MUNN T, WILLS B A. Wills’ mineral processing technology: An introduction to the practical aspects of ore treatment and mineral recovery [M]. UK: Butterworth-Heinemann, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Liu  (刘维) or Wen-qing Qin  (覃文庆).

Additional information

Foundation item: Project(51204210) supported by the National Natural Science Foundation of China; Project(2011AA061001) supported by the High-Tech Research and Development Program of China; Project(2012BAC12B04) supported by the National Science & Technology During the 12th Five-Year Plan Period, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Yx., Liu, W., Qin, Wq. et al. Sulfidation roasting of lead and zinc carbonate with sulphur by temperature gradient method. J. Cent. South Univ. 22, 1635–1642 (2015). https://doi.org/10.1007/s11771-015-2681-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2681-9

Key words

Navigation