Journal of Central South University

, Volume 21, Issue 2, pp 500–505 | Cite as

First principles calculation on electronic structure, chemical bonding, elastic and optical properties of novel tungsten triboride

  • Yi-fu Wang (王一夫)
  • Qing-lin Xia (夏庆林)
  • Yan Yu (余燕)


The electronic structures, chemical bonding, elastic and optical properties of the novel hP24 phase WB3 were investigated by using density-functional theory (DFT) within generalized gradient approximation (GGA). The calculated energy band structures show that the hP24 phase WB3 is metallic material. The density of state (DOS) and the partial density of state (PDOS) calculations show that the DOS near the Fermi level is mainly from the W 5d and B 2p states. Population analysis suggests that the chemical bonding in hP24-WB3 has predominantly covalent characteristics with mixed covalent-ionic characteristics. Basic physical properties, such as lattice constant, bulk modulus, shear modulus and elastic constants C ij were calculated. The elastic modulus E and Poisson ratio ν were also predicted. The results show that hP24-WB3 phase is mechanically stable and behaves in a brittle manner. Detailed analysis of all optical functions reveals that WB3 is a better dielectric material, and reflectivity spectra show that WB3 can be promised as good coating material in the energy regions of 8.5–11.4 eV and 14.5–15.5 eV.

Key words

hP24-WB3 first principles calculation electronic structure chemical bonding, elastic properties optical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    LEVINE J B, TOLBERT S H, KANER R B. Advancements in the search for superhard ultra-incompressible metal borides [J]. Adv Funct Mater, 2009, 19: 3519–3533.CrossRefGoogle Scholar
  2. [2]
    WASKOWSKA A, GERWARD L, STAUN O J, RAMESH B K, VAITHEESWARAN G, KANCHANA V, SVANE A, FILIPOV V B, LEVCHENKO G, LYASCHENKO A. Thermoelastic properties of ScB2, TiB2, YB4 and HoB4: Experimental and theoretical studies [J]. Acta Materialia, 2011, 59: 4886–4894.CrossRefGoogle Scholar
  3. [3]
    GOU Hui-yang, LI Zhi-ping, NIU Hui, GAO Fa-ming, ZHANG Jing-wu, EWING R C, LIAN J. Unusual rigidity and ideal strength of CrB4 and MnB4 [J]. Appl Phys Lett, 2012, 100: 111907.CrossRefGoogle Scholar
  4. [4]
    CHUNG H Y, WEINBERGER M B, LEVINE J B. Synthesis of ultra-incompressible superhard rhenium diboride at ambient pressure [J]. Science, 2007, 316(5823): 436–439.CrossRefGoogle Scholar
  5. [5]
    HEBBACHE M, STUPAREVIC L, ZIVKOVIC D. A new superhard material: Osmium diboride OsB2 [J]. Solid State Commun, 2006, 139(5): 227–231.CrossRefGoogle Scholar
  6. [6]
    GU Q F, KRAUSS G, STEURER W. Transition metal borides: Superhard versus ultra-incompressible [J]. Adv Mater, 2008, 20(19): 3620–3627.CrossRefGoogle Scholar
  7. [7]
    RAU J V, LATINI A, TEGHIL R, DE BONIS A, FOSCA M, CAMINITI R, ALBERTINI V R. Superhard tungsten tetraboride films prepared by pulsed laser deposition method [J]. ACS Appl Mater & Interf, 2011, 3(9): 3738–3743.CrossRefGoogle Scholar
  8. [8]
    MOHAMMADI R, LECH A T, XIE M. Tungsten tetraboride, an inexpensive superhard material [J]. Proc Natl Acad Sci USA, 2011, 108(27): 10958–10962.CrossRefGoogle Scholar
  9. [9]
    IVANOVSKII A L. Platinum group metal nitrides and carbides: synthesis, properties and simulation [J]. Russ Chem Rev, 2009, 78: 303–348.CrossRefGoogle Scholar
  10. [10]
    ZHENG J C. Superhard hexagonal transition metal and its carbide and nitride: Os, OsC, and OsN [J]. Phys Rev B, 2005, 72: 052105.CrossRefGoogle Scholar
  11. [11]
    LI Y W, MA Y M. Crystal structure and physical properties of OsN: First-principle calculations [J]. Solid State Commun, 2010, 150(15/16): 759–762.CrossRefGoogle Scholar
  12. [12]
    DU X P, WANG Y X, LO V C. Investigation of tetragonal ReN2 and WN2 with high shear moduli from first-principles calculations [J]. Phys Letts A, 2010, 374(25): 2569–2574.CrossRefGoogle Scholar
  13. [13]
    PENG F, CHEN D, YANG X D. First-principles calculations on elasticity of OsN2 under pressure [J]. Solid State Commun, 2009, 149: 2135–2138.CrossRefGoogle Scholar
  14. [14]
    LIANG Y, GOU Y, YUAN X, ZHONG Z, ZHANG W. Unexpectedly hard and highly stable WB3 with a noncompact structure [J]. Chem Phys Letts, 2013, 580: 48–52.CrossRefGoogle Scholar
  15. [15]
    SEGALL M D, LINDAN PHILIP J D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation: Ideas, illustrations and the CASTEP code [J]. J Phys: Condens Matter, 2002, 14(11): 2717–2744.Google Scholar
  16. [16]
    CLARK S J, SEGALL M D, PICKARD C J, HASNIP P J, PROBERT M J, REFSON K, PAYNE M C. First principles methods using CASTEP [J]. Zeitschrift fuer Kristallographie, 2005, 220(5/6): 567–570.Google Scholar
  17. [17]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Phys Rev Lett, 1996, 77: 3865–3868.CrossRefGoogle Scholar
  18. [18]
    MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Phys Rev B, 1976, 13: 5188–5192.CrossRefMathSciNetGoogle Scholar
  19. [19]
    HERMET P, GOUMRI-SAID S, KANOUN M B, HENRARD L. First-principles investigation of the physical properties of magnesium nitridoboride [J]. J Phys Chem C, 2009, 113: 4997–5003.CrossRefGoogle Scholar
  20. [20]
    XIA Q L, YI J H, LI Y F, PENG Y D, WANG H Z, ZHOU C S. First-principles investigations of the band structure and optical properties of γ-boron [J]. Solid State Commun, 2010, 150: 605–608.CrossRefGoogle Scholar
  21. [21]
    PONCE C A, CASALI R A, CARAVACA M A. Ab initio study of mechanical and thermo-acoustic properties of tough ceramics: applications to HfO2 in its cubic and orthorhombic phase [J]. J Phys Condens Mater, 2008, 20: 045213.CrossRefGoogle Scholar
  22. [22]
    BOUHEMADOU A, KHENATA R, CHEGAAR M, MAABED S. First-principles calculations of structural, elastic, electronic and optical properties of the antiperovskite AsNMg3 [J]. Phys Lett A, 2007, 371: 337–343.CrossRefGoogle Scholar
  23. [23]
    SHEIN I R, IVANOVSKII A L. Elastic properties and chemical bonding in ternary arsenide SrFe2As2 and quaternary oxyarsenide LaFeAsO—Basic phases for new 38–55 K superconductors from first principles [J]. Physica C, 2009, 469: 15–19.CrossRefGoogle Scholar
  24. [24]
    SHEIN I R, IVANOVSKII A L. Elastic properties of quaternary oxyarsenide LaOFeAs and LaOFeP as basic phases for new 26–52 K superconducting materials from first principles [J]. Scripta Materialia, 2008, 59: 1099–1102.CrossRefGoogle Scholar
  25. [25]
    SHI Y M, YE S L. Chemical bonding and elastic properties of quaternary arsenide oxides YZnAsO and LaZnAsO investigated by first principles [J]. Trans Nonferrous Met Soc China, 2011, 21: 1378–1382.CrossRefGoogle Scholar
  26. [26]
    HILL R. The elastic behaviour of a crystalline aggregate [J]. Proc Phys Soc London A, 1952, 65: 349–355.CrossRefGoogle Scholar
  27. [27]
    XIA Q L, YI J H, LI Y F, PENG Y D, WANG H Z, ZHOU C S. First-principles study of electronic structure and elastic properties of C doping Mg(B1−xCx)2 [J]. Mater Sci & Engin Powd Metall, 2011, 16(1): 7–12. (in Chinese)Google Scholar
  28. [28]
    HAINES J, LEGER J M, BOCQUILLON G A. Sythesis and design of superhard materials [J]. Rev Mater Res, 2001, 31: 1–23.CrossRefGoogle Scholar
  29. [29]
    ANDERSON O L. A simplified method for calculating the Debye temperature from elastic constants [J]. J Phys Chem Solids 1963, 24(7): 909–917.CrossRefGoogle Scholar
  30. [30]
    CHUNG D H, BUESSEM W R. Anisotropy in single crystal refractory compounds [M]. New York: Plenum Press, 1968: 217.Google Scholar
  31. [31]
    SUN Jian, WANG Hui-tian, HE Ju-long, TIAN Yong-jun. Ab initio investigations of optical properties of the high-pressure phases of ZnO [J]. Phys Rev B, 2005, 71(12): 125132.CrossRefGoogle Scholar
  32. [32]
    CHENG Y C, WU X L, ZHU J, XU L L, LI S H, CHU P K. Optical properties of rocksalt and zinc blende AlN phases: First-principles calculations [J]. J Appl Phys, 2008, 103: 073707.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Key Laboratory of High Performance Computing and Stochastic Information Processing of Ministry of Education of China (College of Mathematics and Computer Science, Hunan Normal University)ChangshaChina
  2. 2.School of Physics and ElectronicsCentral South UniversityChangshaChina

Personalised recommendations