Journal of Central South University

, Volume 18, Issue 5, pp 1383–1388 | Cite as

Characteristics of non-magnetic nanoparticles in magnetically fluidized bed by adding coarse magnets

  • Li Zhou (周立)
  • Run-li Diao (刁润丽)
  • Tao Zhou (周涛)Email author
  • Hiroyuki Kage
  • Yoshihide Mawatari


The fluidization behavior of SiO2, ZnO and TiO2 non-magnetic nanoparticles was investigated in a magnetically fluidized bed (MFB) by adding coarse magnets. The effects of both the amount of coarse magnets and the magnetic field intensity on the fluidization quality of these nanoparticles were investigated. The results show that the coarse magnets added to the bed lead to a reduction in the size of the aggregates formed naturally by the primary nanoparticles. As the macroscopic performances of improved fluidization quality, the bed expansion ratio increases whilst the minimum fluidization velocity decreases with increasing the magnetic field intensity, but for TiO2 nanoparticles there exists a suitable magnetic field intensity of 0.059 6 T. The optimal amounts of coarse magnets for SiO2, ZnO and TiO2 non-magnetic nanoparticles are 40%, 50% and 60% (mass fraction), respectively. The bed expansion results analyzed by the Richardson-Zaki scaling law show that the exponents depend on both the amount of coarse magnets and the magnetic field intensity.

Key words

non-magnetic nanoparticles magnetic fluidization agglomerate coarse magnet 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    MATSUDA S, HATANO H, MURAMOYO T, TSUTSUMI A. Modeling for size reduction of agglomerates in nanoparticle fluidization [J]. AIChE J, 2004, 50(11): 2763–2771.CrossRefGoogle Scholar
  2. [2]
    ZHOU T, LI H Z, SHINOHARA K. Agglomerating fluidization of group C particles: Major factors of coalescence and breakup of agglomerates [J]. Advanced Powder Technol, 2006, 17(2): 159–166.CrossRefGoogle Scholar
  3. [3]
    ZHOU T, LI H Z. Estimation of agglomerate size of cohesive particles during fluidization [J]. Powder Technol, 1999, 101(1): 57–62.CrossRefGoogle Scholar
  4. [4]
    YU Q, DAVE R, ZHU C. Enhanced fluidization of nanoparticles in an oscillating magnetic field [J]. AIChE J, 2005, 51(7): 1971–1979.CrossRefGoogle Scholar
  5. [5]
    ZHU C, YU Q, DAVE R. Gas fluidization characteristics of nanoparticle agglomerates [J]. AIChE J, 2005, 51(2): 426–439.CrossRefGoogle Scholar
  6. [6]
    HAKIM L, PORTMAN J, CSAPER M, WEIMER A. Aggregation behavior of nanoparticles in fluidized beds [J]. Powder Technol, 2005, 160(3): 149–160.CrossRefGoogle Scholar
  7. [7]
    LI H Z, TONG H. Multi-scale fluidization of ultrafine powders in a fast-bed-riser/conical-dipleg CFB loop [J]. Chem Eng Sci, 2004, 59(8/9): 1897–1904.CrossRefGoogle Scholar
  8. [8]
    HRISTOV J Y. Magnetic field assisted fluidization—A unified approach: Part 5. A hydrodynamic treatise on liquid-solid fluidized beds [J]. Review of Chem Eng, 2006, 22(4/5): 195–377.Google Scholar
  9. [9]
    WANG X S, RAHMAN F, RHODES M J. Nanoparticle fluidization and Geldart’s classification [J]. Chem Eng Sci, 2007, 62(13): 3455–3461.CrossRefGoogle Scholar
  10. [10]
    ZHU Q S, LI H Z. Study on magnetic fluidization of group C powders [J]. Powder Technol, 1996, 86(2): 179–185.CrossRefGoogle Scholar
  11. [11]
    HRISTOV J Y. Simple bed expansion correlations for magnetically assisted gas-fluidized tapered beds [J]. International Review of Chemical Engineering-Rapid Communications, 2009, 1(4): 316–323.Google Scholar
  12. [12]
    YANG J, SLIVA A, BANERJEE A, DAVE R N, PFEFFER R. Dry particle coating for improving the flowability of cohesive powders [J]. Powder Technol, 2005, 158(1/2/3): 21–33.CrossRefGoogle Scholar
  13. [13]
    LU X S, LI H Z. Fluidization of CaCO3 and Fe2O3 particle mixtures in a transverse rotating magnetic field [J]. Powder Technol, 2000, 107(1/2): 66–78.CrossRefGoogle Scholar
  14. [14]
    ZENG P, ZHOU T, CHEN G Q, ZHU Q S. Behavior of mixed ZnO and SiO2 nano-particles in magnetic field assisted fluidization [J]. China Particuology, 2007(5): 169–173.CrossRefGoogle Scholar
  15. [15]
    ZENG P, ZHOU T, YANG J S. Behavior of mixtures of nano-particles in magnetically assisted fluidized bed [J]. Chem Eng and Process, 2008, 47(1): 101–108.CrossRefGoogle Scholar
  16. [16]
    HRISTOV J Y. Magnetic field assisted fluidization—A unified approach: Part 7. Mass Transfer: Chemical reactors, basic studies and practical implementations thereof [J]. Reviews in Chemical Engineering, 2009, 25(1/2/3): 1–254.CrossRefGoogle Scholar
  17. [17]
    RICHARDSON J F, ZAKI W N. Sedimentation and fluidization: Part I [J]. Transactions of the Institution of Chemical Engineers, 1954, 32: 35–54.Google Scholar
  18. [18]
    CHEN G Q, ZHOU T, LI H Z. Characteristics of anthraquinone hydrogenation catalysts in a liquid-solid fluidized bed [J]. The Canadian J of Chem Eng, 2008, 86: 288–292.CrossRefGoogle Scholar
  19. [19]
    YANG J S, ZHOU T, SONG L Y. Agglomerating vibro-fluidization behavior of nano-particles [J]. Advanced Powder Technol, 2009, 20(2): 158–163.CrossRefGoogle Scholar
  20. [20]
    WANG Y, GU G, WEI F, WU J. Fluidization and agglomerate structure of SiO2 nanoparticles [J]. Powder Technol, 2002, 124(1/2): 152–159.Google Scholar
  21. [21]
    VALVERDE J M, CASTELLANOS A. Fluidization of nanoparticles: A modified Richardson-Zaki law [J]. AIChE J, 2006, 52(2): 838–842.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Li Zhou (周立)
    • 1
    • 2
  • Run-li Diao (刁润丽)
    • 1
  • Tao Zhou (周涛)
    • 1
    Email author
  • Hiroyuki Kage
    • 3
  • Yoshihide Mawatari
    • 3
  1. 1.School of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  2. 2.Department of Mechanical EngineeringHunan Institute of TechnologyHengyangChina
  3. 3.Department of Applied ChemistryKyushu Institute of TechnologyTobata, KitakyushuJapan

Personalised recommendations