Advertisement

Journal of Central South University

, Volume 18, Issue 2, pp 319–322 | Cite as

CC-CV charge protocol based on spherical diffusion model

  • Lian-xing Li (李连兴)
  • Xin-cun Tang (唐新村)Email author
  • Yi Qu (瞿毅)
  • Hong-tao Liu (刘洪涛)
Article

Abstract

A new insight into the constant current-constant voltage (CC-CV) charge protocol based on the spherical diffusion model was presented. From the model, the CV-charge process compensates, to a large extent, the capacity loss in the CC process, and the capacity loss increases with increasing the charging rate and decreases with increasing the lithium-ion diffusion coefficient and using a smaller τ value (smaller particle-size and larger diffusion coefficient) and a lower charge rate will be helpful to decreasing the capacity loss. The results show that the CC and the CV charging processes, in some way, are complementary and the capacity loss during the CC charging process due to the large electrochemical polarization can be effectively compensated from the CV charging process.

Key words

lithium-ion battery charge protocol constant current-constant voltage mode capacity loss 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ABE T, SAGANE F, OHTSUKA M, IRIYAMA Y, OGUMI Z. Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte—A key to enhancing the rate capability of lithium-ion batteries [J]. J Electrochem Soc, 2005, 152(11): A2151–A2154.CrossRefGoogle Scholar
  2. [2]
    ARORA P, WHITE R E, DOYLE M. Capacity fade mechanisms and side reactions in lithium-ion batteries [J]. J Electrochem Soc, 1998, 145(10): 3647–3667.CrossRefGoogle Scholar
  3. [3]
    RAMADASS P, DURAIRAJAN A, HARAN B, WHITE R E, POPOV B N. Studies on capacity fade of spinel-based Li-ion batteries [J]. J Electrochem Soc, 2002, 149(1): A54–A60.Google Scholar
  4. [4]
    AURBACH D, MARKOVSKY B, WEISSMAN I, LEVI E, EIN-ELI Y. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J]. Electrochim Acta, 1999, 45(1/2): 67–86.CrossRefGoogle Scholar
  5. [5]
    DOYLE M, NEWMAN J, GOZDZ A S, SCHMUTZ C N, TARACSON J M. Comparison of modeling predictions with experimental data from plastic lithium ion cells [J]. J Electrochem Soc, 1996, 143(6): 1890–1903.CrossRefGoogle Scholar
  6. [6]
    BROUSSLEY M, BIENSAN P, SIMON B. Lithium insertion into host materials: The key to success for Li ion batteries [J]. Electrochim Acta, 1999, 45(1/2): 3–22.CrossRefGoogle Scholar
  7. [7]
    NOTTEN P H L, OP HETVELD J H G, VAN BEEK J R G. Boostcharging Li-ion batteries: A challenging new charging concept [J]. J Power Sources, 2005, 145(1): 89–94.CrossRefGoogle Scholar
  8. [8]
    LIN P C, LIU Y H, LIU YH, CHEN J K, CHEN C H. A fully digital rapid charger for electric scooters [J]. Proceedings of 18th Symposium on Electrical Vehicles, Session D7A, 2001: 1–13.Google Scholar
  9. [9]
    LIU Y H, TENG J H, LIN Y C. Search for an optimal rapid charging pattern for lithium-ion batteries using ant colony system algorithm [J]. IEEE Trans Ind Electron, 2005, 52(5): 1328–1336.CrossRefGoogle Scholar
  10. [10]
    CHUNG S K, ANDRIIKO A A, MON’KO A P, LEE S H. On charge conditions for Li-ion and other secondary lithium batteries with solid intercalation electrodes [J]. J Power Sources, 1999, 79(2): 205–211.CrossRefGoogle Scholar
  11. [11]
    SIKHA G, RAMADASS P, HARAN B S, WHITE R E, POPOV B N. Comparison of the capacity fade of Sony US 18650 cells charged with different protocols [J]. J Power Sources, 2003, 122(1): 67–76.CrossRefGoogle Scholar
  12. [12]
    LI J, MURPHY E, WINNICK J, KOHL P A. The effects of pulse charging on cycling characteristics of commercial lithium-ion batteries [J]. J Power Sources, 2001, 102(1/2): 302–309.CrossRefGoogle Scholar
  13. [13]
    TANG X C, PAN C Y, HE L P, LI L Q, CHEN Z Z. A novel technique based on the ratio of potentio-charge capacity to galvanocharge capacity (RPG) for determination of the diffusion coefficient of intercalary species within insertion-host materials: Theories and experiments [J]. Electrochimica Acta, 2004, 49(19): 3113–3119.CrossRefGoogle Scholar
  14. [14]
    VERBRUGGE M W, KOCH B J. Electrochemistry of intercalation materials: Charge-transfer reaction and intercalate diffusion in porous electrodes [J]. J Electrochem Soc, 1999, 146(3): 833–839.CrossRefGoogle Scholar
  15. [15]
    TANG Z Y, XUE J J, LI J G, WANG Z L. Discharge process of insertion electrodes controlled by lithium ion diffusion in solid materials [J]. Acta Phys-Chim Sin, 2001, 17(6): 526–530.Google Scholar
  16. [16]
    JIN L, TANG X C, PAN C Y, JIANG C K. Variation of solid diffusion coefficient for lithium ions in LiCoO2 with charge- discharge cycles [J]. Chin J Inorg Chem, 2007, 23(7): 1238–1241.Google Scholar
  17. [17]
    ZHANG S S, XU K, JOW T R. Study of the charging process of a LiCoO2-based Li-ion battery [J]. J Power Sources, 2006, 160(2): 1349–1354.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lian-xing Li (李连兴)
    • 1
  • Xin-cun Tang (唐新村)
    • 1
    • 2
    Email author
  • Yi Qu (瞿毅)
    • 1
  • Hong-tao Liu (刘洪涛)
    • 1
  1. 1.School of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  2. 2.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations