Journal of Central South University of Technology

, Volume 16, Issue 6, pp 871–875 | Cite as

Morphologies of hydroxyapatite nanoparticles adjusted by organic additives in hydrothermal synthesis

  • Hai-bin Zhang (张海斌)
  • Ke-chao Zhou (周科朝)
  • Zhi-you Li (李志友)
  • Su-ping Huang (黄苏萍)
  • Yan-zhong Zhao (赵颜忠)


Properties of hydroxyapatite (HA, Ca10(PO4)6(OH)2), including bioactivity, biocompatibility, solubility and adsorption could be tailored over wide ranges by the control of particle composition, particle size and morphology. In order to satisfy various applications, well-crystallized pure HA nanoparticles were synthesized at moderate temperatures by hydrothermal synthesis, and HA nanoparticles with different lengths were obtained by adding organic additives. X-ray diffractometry (XRD) and Fourier transform infrared (FTIR) spectrometry were used to characterize these nanoparticles, and the morphologies of the HA particles were observed by transmission electron microscopy (TEM). The results demonstrate that shorter rod-like HA particles can be prepared by adding cetyltrimethylammonium bromide (CTAB), as the additive of CTAB can block the HA crystal growth along with c-axis. And whisker HA particles are obtained by adding ethylenediamine tetraacetic acid (EDTA), since EDTA may have effect on the dissolution-reprecipitation process of HA.

Key words

hydroxyapatite nanoparticles hydrothermal method morphologies organic additive cetyltrimethylammonium bromide ethylenediamine tetraacetic acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    JEVTIC M, MITRIC M, SKAPIN S, JANCAR B, IGNJATOVIC N, USKOKOVIC D. Crystal structure of hydroxyapatite nanorods synthesized by sonochemical homogeneous precipitation[J]. Crystal Growth and Design, 2008, 8(7): 2217–2222.CrossRefGoogle Scholar
  2. [2]
    ZOU Jian-peng, RUAN Jian-ming, HUANG Bai-yun, LIU Jian-ben, ZHOU Xiao-xia. Physico-chemical properties and microstructure of hydroxyapatite 2316L stainless steel biomaterials[J]. Journal of Central South University of Technology, 2004, 11(2): 113–118.CrossRefGoogle Scholar
  3. [3]
    MATSUMOTO T, OKAZAKI M, INOUE M, YAMAGUCHI S, KUSUNOSE T, TOYONAGA T, HAMADA Y, TAKAHASHI J. Hydroxyapatite particles as a controlled release carrier of protein[J]. Biomaterials, 2004, 25: 3807–3812.CrossRefGoogle Scholar
  4. [4]
    ZHU Shai-hong, HUANG Bai-yun, ZHOU Ke-chao, HUANG Su-ping, LIU Fang, LI Yi-ming. Hydroxyapatite nanoparticles as a novel gene carrier[J]. Journal of Nanoparticle Research, 2004, 6: 307–311.CrossRefGoogle Scholar
  5. [5]
    IOKU K, YAMAUCHI S, FUJIMORI H, GOTO S, YOSHIMURA M. Hydrothermal preparation of fibrous apatite and apatite sheet[J]. Solid State Ionics, 2002, 151: 147–150.CrossRefGoogle Scholar
  6. [6]
    PARK Y M, RYU S C, YOON S Y, STEVENS R, PARK H C, Preparation of whisker-shaped hydroxyapatite/β-tricalcium phosphate composite[J]. Materials Chemistry and Physics, 2008, 109: 440–447.CrossRefGoogle Scholar
  7. [7]
    YAN Li, LI Ya-dong, DENG Zhao-xiang, ZHUANG Jin, SUN Xiao-ming. Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods[J]. International Journal Inorganic Materials, 2001, 3(7): 633–637.CrossRefGoogle Scholar
  8. [8]
    SUJARIDWORAKUN P, KOH F, FUJIWARA T, PONGKAO D, AHNIYAZ A, YOSHIMURA M. Preparation of anatase nanocrystals deposited on hydroxyapatite by hydrothermal treatment[J]. Materials Science and Engineering C, 2005, 25(1): 87–91.CrossRefGoogle Scholar
  9. [9]
    YOSHIMURA M, SUJARIDWORAKUN P, KOH F, FUJIWARA T, PONGKAO D, AHNIYAZ A. Hydrothermal conversion of calcite crystals to hydroxyapatite[J]. Materials Science and Engineering C, 2004, 24(4): 521–525.CrossRefGoogle Scholar
  10. [10]
    RIMAN R E, SUCHANEK W L, BYRAPPA K, CHEN C W, SHUK P, OAKES C S. Solution synthesis of hydroxyapatite designer particulates[J]. Solid State Ionics, 2002, 151: 393–402.CrossRefGoogle Scholar
  11. [11]
    CHANG M C, IKOMA T, KIKUCHI M, TANAKA J. Crosslinkage of hydroxyapatite/collagen nanocomposite using glutaraldehyde[J]. Journal of Materials Science: Materials in Medicine, 2002, 13: 993–997.CrossRefGoogle Scholar
  12. [12]
    CHANG M C, KO C C, DOUGLAS W H. Preparation of hydroxyapatite-gelatin nanocomposite[J]. Biomaterials, 2003, 24: 2853–2862.CrossRefGoogle Scholar
  13. [13]
    ZHAI Y, CUI F Z. Recombinant human-like collagen directed growth of hydroxyapatite nanocrystals[J]. Journal of Crystal Growth, 2006, 291: 202–206.CrossRefGoogle Scholar
  14. [14]
    ZHANG Fan, ZHOU Zhuo-hua, YANG Shi-ping, MAO Li-hong, CHEN Hong-mei, YU Xi-bin. Hydrothermal synthesis of hydroxyapatite nanorods in the presence of anionic starburst dendrimer[J]. Materials Letters, 2005, 59: 1422–1425.CrossRefGoogle Scholar
  15. [15]
    WANG A L, YIN H B, LIU D, WU H X, WADA Y J, REN M, XU Y Q, JIANG T S, CHENG X N. Effects of organic modifiers on the size-controlled synthesis of hydroxyapatite nanorods[J]. Applied Surface Science, 2007, 253: 3311–3316.CrossRefGoogle Scholar
  16. [16]
    LIU Ying-kai, WANG Wen-zhong, ZHAN Yong-jie, ZHENG Chang-lin, WANG Guang-hou. A simple route to hydroxyapatite nanofibers[J]. Materials Letters, 2002, 56: 496–501.CrossRefGoogle Scholar
  17. [17]
    KANDORI K, HORIGAMI N, YASUKAWA A, ISHIKAWA T. Texture and formation mechanism of fibrous calcium hydroxyapatite particles prepared by decomposition of calcium-EDTA chelates[J]. Journal of the American Ceramic Society, 1997, 80: 1157–1164.CrossRefGoogle Scholar
  18. [18]
    ARCE H, MONTERO M L, SAENZ A, CASTANO V M. Effect of pH and temperature on the formation of hydroxyapatite at low temperatures by decomposition of a Ca-EDTA complex[J]. Polyhedron, 2004, 23: 1897–1901.CrossRefGoogle Scholar
  19. [19]
    YAN Si-jia, ZHOU Zhuo-hua, ZHANG Fan, YANG Shi-ping, YANG Lian-zhun, YU Xi-bin. Effect of anionic PAMAM with amido groups starburst dendrimers on the crystallization of Ca10(PO4)6(OH)2 by hydrothermal method[J]. Materials Chemistry and Physics, 2006, 99: 164–169.CrossRefGoogle Scholar
  20. [20]
    WANG Ying-jun, CHEN Jing-di, WEI Kun, ZHANG Shu-hua, WANG Xi-dong. Surfactant-assisted synthesis of hydroxyapatite particles[J]. Materials Letters, 2006, 60: 3227–3231.CrossRefGoogle Scholar
  21. [21]
    WIERZBICKI A, CHEUNG H S. Molecular modeling of inhibition of hydroxyapatite by phospho-citrate[J]. Journal of Molecular Struc-Theochem, 2000, 529: 73–82.CrossRefGoogle Scholar
  22. [22]
    KANDORI K, TSUYAMA S, TANAKA H, ISHIKAWA T. Protein adsorption characteristics of calcium hydroxyapatites modified with pyrophosphoric acids[J]. Colloid and Surface Biointerface, 2007, 58: 98–104.CrossRefGoogle Scholar
  23. [23]
    KANDORI K, ODA S, TSUYAMA S. Effects of pyrophosphate ions on protein adsorption onto calcium hydroxyapatite[J]. Journal of Physical Chemistry B, 2008, 112: 2542–2547.CrossRefGoogle Scholar
  24. [24]
    FILGUEIRAS M R T, MKHONTO D, DE LEEUW N H. Computer simulations of the adsorption of citric acid at hydroxyapatite surfaces[J]. Journal of Crystal Growth, 2006, 294: 60–68.CrossRefGoogle Scholar
  25. [25]
    ZHANG Hong-quan, WANG You-fa, YAN Yu-hua, LI Shi-pu. Precipitation of biocompatible hydroxyapatite whiskers from moderately acid solution[J]. Ceramics International, 2003, 29: 413–418.CrossRefGoogle Scholar
  26. [26]
    AIZAWA M, UENO H, ITATANI K, OKADA I. Syntheses of calcium-deficient apatite fibres by a homogeneous precipitation method and their characterizations[J]. Journal of the European Ceramic Society, 2006, 26: 501–507.CrossRefGoogle Scholar
  27. [27]
    KANZAKI N, ONUMA K, TREBOUX G, ITO A. Dissolution kinetics of dicalcium-phosphate dihydrate under pseudophysiological conditions[J]. Journal of Crystal Growth, 2002, 235: 465–470.CrossRefGoogle Scholar
  28. [28]
    WALSH D, KINGSTON J L, HEYWOOD B R, MANN S. Influence of monosaccharides and related molecules on the morphology of hydroxyapatite[J]. Journal of Crystal Growth, 1993, 133: 1–12.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Hai-bin Zhang (张海斌)
    • 1
  • Ke-chao Zhou (周科朝)
    • 1
  • Zhi-you Li (李志友)
    • 1
  • Su-ping Huang (黄苏萍)
    • 1
  • Yan-zhong Zhao (赵颜忠)
    • 1
    • 2
  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina
  2. 2.The Third Xiangya HospitalCentral South UniversityChangshaChina

Personalised recommendations