Advertisement

Iron(II) tetrasulfophthalocyanine mimetic enzymatic synthesis of conducting polyaniline in micellar system

  • Xing Hu (胡 兴)Email author
  • Hui Liu (刘 惠)
  • Guo-lin Zou (邹国林)
Article

Abstract

Iron(II) tetrasulfophthalocyanine (FeTSPc), as a novel mimetic enzyme of peroxidase, was used in the synthesis of a conducting polyaniline (PANI)/sodium dodecylsulfate (SDS) complex in SDS aqueous micellar solutions. The effects of pH, concentrations of aniline, SDS and H2O2, and reaction time on polymerization of aniline were studied in this case as shown by UV-Vis absorption spectroscopy. The results show that a wide range of pH (0.5–4.0) is required to produce the conducting PANI, and the optimal pH is 1.0 in SDS micelle. The optimal concentrations of aniline, SDS and H2O2 in feed, and reaction time in this case for the production of conducting PANI are respectively 10 mmol/L, 10 mmol/L, 25 mmol/L, and 15 h. FT-IR spectrum, elemental analysis, conductivity, cyclic voltammetry and thermogravimetric analysis confirm the thermal stability and electroactive form of PANI.

Key words

iron(II) tetrasulfophthalocyanine polyaniline mimetic enzyme conductivity micelle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    AKKARA J A, SENCEAL K J, KAPLAN D L. Synthesis and characterization of polymers produced by horseradish peroxodase in dioxane [J]. Journal of Polymer Science: Polymer Chemistry Edition, 1991, 29(3): 1561–1568.Google Scholar
  2. [2]
    SAKHAROV I Y, VOROBIEV A K, CASTILLO LEON J J. Synthesis of polyelectrolyte complexes of polyaniline and sulfonated polystyrene by palm tree peroxidase [J]. Enzyme and Microbial Technology, 2003, 33(9): 661–667.CrossRefGoogle Scholar
  3. [3]
    KARAMYSHEV A V, SHLEEV S V, KOROLEVA O V, YAROPOLOV A I, SAKHAROV I Y. Laccase-catalyzed synthesis of conducting polyaniline [J]. Enzyme and Microbial Technology, 2003, 33(9): 556–564.CrossRefGoogle Scholar
  4. [4]
    SAKHAROV I Y, OUPOROV I V, VOROBIEV A K, ROIG M G, PLETJUSHKINA O Y. Modeling and characterization of polyelectrolyte complex of polyaniline and sulfonated polystyrene produced by palm tree peroxidase [J]. Synthetic Metals, 2004, 142(1/3): 127–135.CrossRefGoogle Scholar
  5. [5]
    HU X, ZHANG Y Y, TANG K, ZOU G L. Hemoglobin-biocatalysts synthesis of a conducting molecular complex of polyaniline and sulfonated polystyrene [J]. Synthetic Metals, 2005, 150(1): 1–7.CrossRefGoogle Scholar
  6. [6]
    HU X, ZHANG Y Y, LI C H, LIU H H, ZOU G L. Synthesis of a conducting polyaniline by hemoglobin as biocatalyst [J]. Acta Chimica Sinica, 2005, 63(1): 33–38. (in Chinese)Google Scholar
  7. [7]
    HU X, SHU X S, LI X W, LIU S G, ZHANG Y Y, ZOU G L. Hemoglobin-biocatalyzed synthesis of conducting polyaniline in micellar solutions [J]. Enzyme and Microbial Technology, 2006, 38(5): 675–682.CrossRefGoogle Scholar
  8. [8]
    SAITO Y, MIFUNE M, NAKASHIMA S, ODO J. Determination of hydrogen peroxide with N,N-diethylaniline and 4-aminoantipyrine by use of an anion-exchange resin modified with manganese-tetrakis (sulphophenyl) porphine, as a substitute for peroxidase [J]. Talanta, 1987, 34: 667–669.CrossRefGoogle Scholar
  9. [9]
    GROOTBOOM N, NYOKONG T J. Iron perchlorophthalocyanine and tetrasulfophthalocyanine catalyzed oxidation of cyclohexane using hydrogen peroxide, chloroperoxybenzonic acid and tert-butylhydroperoxide as oxidants [J]. Journal of Molecular Catalysis A: Chemical, 2002, 179: 113–123.CrossRefGoogle Scholar
  10. [10]
    HANASAKI N, MATSUDA M, TAJIMA H, NAITO T, INABE T. Torque study of TPP[Fe(Pc)(CN)2]2 [J]. Synthetic Metals, 2003, 137: 1227–1228.CrossRefGoogle Scholar
  11. [11]
    ELLIS S, KOZHEVNIKOV I V. Homogeneous oxidation of methyl isobutyrate with oxygen catalysed by metal complexes: polyoxometalates versus metalloporphyrins and metallophthalocyanines [J]. Journal of Molecular Catalysis A: Chemical, 2002, 187: 227–235.CrossRefGoogle Scholar
  12. [12]
    MILOS M. A comparative study of biomimetic oxidation of oregano essential oil by H2O2 or KHSO5 catalyzed by Fe(III) mesotetraphenylporphyrin or Fe(III) phthalocyianine [J]. Applied Catalysis A: General, 2001, 216: 157–161.CrossRefGoogle Scholar
  13. [13]
    HABER J, PAMIN K, POLTOWICZ J. Cationic metalloporphyrins and other macrocyclic compounds in zeolite matrix as catalysts for oxidation with dioxygen [J]. Journal of Molecular Catalysis A: Chemical, 2004, 224: 153–159.CrossRefGoogle Scholar
  14. [14]
    LIU W, CHOLLI A L, NAGARAJAN R, KUMAR J. TRIPATHY S K, SENECAL K J, BRUNO F F, SAMUELSON L A. The role of template in the enzymatic synthesis of conducting polyaniline [J]. Journal of American Chemical Society, 1999, 121: 11345–11355.CrossRefGoogle Scholar
  15. [15]
    KIM B J, OH S G, HAN M G, IM S S. Preparation of polyaniline nanoparticles in micellar solutions as polymerization medium [J]. Langmuir, 2000, 16: 5841–5845.CrossRefGoogle Scholar
  16. [16]
    WEBER J H, BUSCH D H. Complexes derived from strong field ligands XIX magnetic properties of transition metal derivatives of 4,4′,4″,4‴-tetrasulfo-phthalocyanine [J]. Inorganic Chemistry, 1965, 4(4): 469–471.CrossRefGoogle Scholar
  17. [17]
    WUDL F, ANGUS R O, LU F L, ALLEMAND P M, VACHON D J, NOWAK M, LIU Z X, HEEGER A J. Poly-phenyleneamineimine: Synthesis and comparison to polyaniline [J]. Journal of American Chemical Society, 1987, 109: 3677–3684.CrossRefGoogle Scholar
  18. [18]
    LIU W, KUMAR J, TRIPATHY S, SAMUELSON L A. Enzymatic synthesis of conducting polyaniline in micelle solutions [J]. Langmuir, 2002, 18: 9696–9704.CrossRefGoogle Scholar
  19. [19]
    LIU W, KUMAR J, TRIPATHY S K, SENECAL K J, SAMUELSON L A. Enzymatically synthesized conducting polyaniline [J]. Journal of American Chemical Society, 1999, 121: 71–78.CrossRefGoogle Scholar
  20. [20]
    PREMACHANDRAN R S, BANERJEE S, WU X K, JOHN V T, MCPHERSON G L, AKKARA J A, AYYAGARI M, KAPLAN D L. Enzymatic synthesis of fluorescent naphthol-based polymers [J]. Macromolecules, 1996, 29: 6452–6460.CrossRefGoogle Scholar
  21. [21]
    SAMUELSON L A, ANAGNOSTOPOULOS A, ALVA K S, KUMAR J, TRIPATHY S K. Biologically derived conducting and water soluble polyaniline [J]. Macromolecules, 1998, 31: 4376–4378.CrossRefGoogle Scholar
  22. [22]
    YUE J, WANG Z H, CROMACK K R, EPSTEIN A J, MACDIARMID A G. Effect of sulfonic acid group on polyaniline backbone [J]. Journal of American Chemical Society, 1991, 113: 2665–2671.CrossRefGoogle Scholar
  23. [23]
    KIM B J, OH S G, HAN M G, IM S S. Synthesis and characterization of polyaniline nanoparticles in SDS micellar solutions [J]. Synthetic Metals, 2001, 122: 297–304.CrossRefGoogle Scholar
  24. [24]
    BERRY B C, SHAIKH A U, VISWANATHAN T. Corrosion prevention of cold rolled steel using water dispersible lignosulfonic acid-doped polyaniline [J]. Polymer Preparation, 2000, 41: 1739–1740.Google Scholar
  25. [25]
    ROY S, FORTIER J M, NAGARAJAN R, TRIPATHY S K, KUMAR J, SAMUELSON L A, BRUNO F F. Biomimetic synthesis of a water soluble conducting molecular complex of polyaniline and lignosulfonate [J]. Biomacromolecules, 2002, 3: 937–941.CrossRefGoogle Scholar
  26. [26]
    VARELA H, DE ALBUQUERQUE MARANHAO S L, MELLO R M Q, TICIANELLI E A, TORESSI R M. Comparisons of charge compensation process in aqueous media of polyaniline and self-doped polyanilines [J]. Synthetic Metals, 2001, 122: 321–327.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  • Xing Hu (胡 兴)
    • 1
    • 2
    Email author
  • Hui Liu (刘 惠)
    • 1
    • 2
  • Guo-lin Zou (邹国林)
    • 3
  1. 1.Department of Life SciencesHuaihua UniversityHuaihuaChina
  2. 2.Key Laboratory of Research and Utilization of Ethnomodicinal Plant Resources of Hunan ProvinceHuaihuaChina
  3. 3.College of Life SciencesWuhan UniversityWuhanChina

Personalised recommendations