Advertisement

Novel fluorescence sensor based on covalent immobilization of 3-amino-9-ethylcarbazole via electrostatically assembled gold nanoparticle layer

  • Shu-zhen Tan (谭淑珍)Email author
  • Shu Long (龙 姝)
  • Jiao-yun Xia (夏姣云)
  • Zhong Cao (曹 忠)
  • Ling Zhang (张 玲)
  • Fu-chun Gong (龚福春)
Article

Abstract

A novel technique of immobilizing indicator dyes by electrostatic adsorption and covalent bonding to fabricate optical sensors was developed. 3-Amino-9-ethylcarbazole (AEC) was attached to the outmost surface of quartz glass slide via aminosilanizing the slide, crosslinking chitosan, adsorbing Au nanoparticle, self-assembling HS(CH2)11OH, and coupling AEC. Thus, an AEC-immobilized optical sensor was obtained. The sensor exhibits a wide linear response range from 7.0×10−7 to 1.0×10−4 mol/L and a correlation coefficient of 0.995 9 for the detection of 2-nitrophenol. The detection limit and response time of the sensor are 1.0×10−7 mol/L and less than 10 s, respectively. The fluorescence intensity of the used sensor can be restored to the blank value by simply rinsing with blank buffer. A very effective matrix for immobilizing indicator dye is provided by the proposed technique, which is adaptable to other indicator dyes with amino groups besides AEC.

Key words

optical sensor chitosan Au nanoparticle 3-amino-9-ethylcarbazole 2-nitrophenol indicator dye 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ZHANG X B, GUO C C, LI Z Z, SHEN G L, YU R Q. An optical fiber chemical sensor for mercury ions based on a porphyrin dimer [J]. Analytical Chemistry, 2002, 74(4): 821–825.CrossRefGoogle Scholar
  2. [2]
    ZENG H H, WANG K M, YU R Q. Development of an optode membrane for the determination of 2-nitrophenol based on fluorescence energy transfer [J]. Analytica Chimica Acta, 1994, 298(2): 271–277.CrossRefGoogle Scholar
  3. [3]
    LIU Y M, PEREIRO-GARCÍA R, VALENCIA-GONZÁLEZ M J, DIAZ-GARCIA M E, SANZ-MEDEL A. Evaluation of some immobilized room-temperature phosphorescent metal chelates as sensing materials for oxygen [J]. Analytical Chemistry, 1994, 66(6): 836–840.CrossRefGoogle Scholar
  4. [4]
    IGARASHI S, KUWAE K, YOTSUYANAGI T. Optical pH sensor of electrostatically immobilized porphyrin on the surface of sulfonated-polystyrene [J]. Analytical Sciences, 1994, 10(5): 821–823.CrossRefGoogle Scholar
  5. [5]
    LU J Z, ZHANG Z J. A reusable optical sensing layer for 2-nitrophenol based on the luminescence quenching of the Eu-thenoyltrifluoroacetone complex [J]. Analytica Chimica Acta, 1996, 318(2): 175–179.CrossRefGoogle Scholar
  6. [6]
    CHRISTINE M, DAVID W, FRED M, STANLEY K. Polymer modification of fiber optic chemical sensors as a method of enhancing fluorescence signal for pH measurement [J]. Analytical Chemistry, 1986, 58(7): 1427–1430.CrossRefGoogle Scholar
  7. [7]
    HISAMOTO H, MANABE Y, YANAI H, TOHMA H, YAMADA T, SUZUKI K. Molecular design, characterization, and application of multiinformation dyes for multidimensional optical chemical sensings (2): Preparation of the optical sensing membranes for the simultaneous measurements of pH and water content in organic media [J]. Analytical Chemistry, 1998, 70(7): 1255–1261.CrossRefGoogle Scholar
  8. [8]
    XAVIER M P, GARCIA-FRESNADILLO D, MORENO-BONDI M C, ORELLANA G. Oxygen sensing in nonaqueous media using porous glass with covalently bound luminescent Ru(II) complexes [J]. Analytical Chemistry, 1998, 70(24): 5184–5189.CrossRefGoogle Scholar
  9. [9]
    MOHR G J, TIRELLI N, SPICHIGER-KELLER U E. Plasticizer-free optode membranes for dissolved amines based on copolymers from alkyl methacrylates and the fluoro reactand ETHT 4014 [J]. Analytical Chemistry, 1999, 71(8): 1534–1539.CrossRefGoogle Scholar
  10. [10]
    AMBROSE T M, MEYERHOFF M E. Optical ion sensing with immobilized thin films of photocrosslinked decyl methacrylate [J]. Analytica Chimica Acta, 1999, 378(1/3): 119–126.CrossRefGoogle Scholar
  11. [11]
    NIU C G, LI Z Z, ZHANG X B, SHEN G L, YU R Q. Covalently immobilized aminonaphthalimide as fluorescent carrier for the preparation of optical sensors [J]. Analytical and Bioanalytical Chemistry, 2002, 372(4): 519–524.CrossRefGoogle Scholar
  12. [12]
    NIU C G, ZENG G M, CHEN L X, SHEN G L, YU R Q. Proton “off-on” behaviour of methylpiperazinyl derivative of naphthalimide: A pH sensor based on fluorescence enhancement [J]. Analyst, 2004, 129(1): 20–24.CrossRefGoogle Scholar
  13. [13]
    NIU C G, GUAN A L, ZENG G M, LIU Y G, HUANG G H, GAO P F, GUI X Q. A ratiometric fluorescence halide sensor based on covalently immobilization of quinine and benzothioxanthene [J]. Analytica Chimica Acta, 2005, 547(2): 221–228.CrossRefGoogle Scholar
  14. [14]
    TAN S Z, NIU C G, JIANG J H, SHEN G L, YU R Q. Optochemical sensor for an ornidazole assay using 1-amino-4-allyloxyanthraquinone as a fluorescent indicator [J]. Analytical Sciences, 2005, 21(8): 967–971.CrossRefGoogle Scholar
  15. [15]
    STELLACCI F, BAUER C A, MEYER-FRIEDRICHSEN T, WENSELEERS W, MARDER S R, PERRY J W. Ultrabright supramolecular beacons based on the self-assembly of two-photon chromophores on metal nanoparticles [J]. Journal of the American Chemical Society, 2003, 125(2): 328–329.CrossRefGoogle Scholar
  16. [16]
    BROWN K R, FOX A P, NATAN M J. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes [J]. Journal of the American Chemical Society, 1996, 118(5): 1154–1157.CrossRefGoogle Scholar
  17. [17]
    GRABAR K C, FREEMAN R G, HOMMER M B, NATAN M J. Preparation and characterization of Au colloid monolayers [J]. Analytical Chemistry, 1995, 67(4): 735–743.CrossRefGoogle Scholar
  18. [18]
    YAKUSHIJI T, SAKAI K, KIKUCHI A, AOYAGI T, SAKURAI Y, OKANO T. Effects of cross-linked structure on temperature-responsive hydrophobic interaction of poly(N-isopropylacrylamide) hydrogel-modified surfaces with steroids [J]. Analytical Chemistry, 1999, 71(6): 1125–1130.CrossRefGoogle Scholar
  19. [19]
    SHAKHSHER Z M, SEITZ W R. Optical detection of cationic surfactants based on ion pairing with an environment-sensitive fluorophor [J]. Analytical Chemistry, 1990, 62(17): 1758–1762.CrossRefGoogle Scholar
  20. [20]
    ZHANG Z, ZHANG Y, MA W, RUSSELL R, SHAKHSHER Z M, GRANT C L, SEITZ W R, SUNDBERG D C. Poly(vinyl alcohol) as a substrate for indicator immobilization for fiber-optic chemical sensors [J]. Analytical Chemistry, 1989, 61(3): 202–205.CrossRefGoogle Scholar
  21. [21]
    XIA Jin-lan, FU Jin-dian, NIE Zhen-yuan, SHEN Li. Preparation, optical properties and cell staining of water soluble amine-terminated PAMAM G 2.0-Au nanocomposites [J]. Journal of Central South University of Technology, 2005, 12(6): 641–646.CrossRefGoogle Scholar
  22. [22]
    WEI Wan-zhi, ZHAI Xiu-rong, ZENG Jin-xiang, GAO Yan-ping, GONG Shu-guo. New amperometric glucose biosensor by entrapping glucose oxidase into chitosan/nanoporous ZrO2/multiwalled carbon nanotubes nanocomposite film [J]. Journal of Central South University of Technology, 2007, 14(1): 73–77.CrossRefGoogle Scholar
  23. [23]
    DUBERTRET B, CALAME M, LIBCHABER A J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides [J]. Nature Biotechnology, 2001, 19(4): 365–370.CrossRefGoogle Scholar
  24. [24]
    MAXWELL D J, TAYLOR J R, NIE S. Self-assembled nanoparticle probes for recognition and detection of biomolecules [J]. Journal of the American Chemical Society, 2002, 124(32): 9606–9612.CrossRefGoogle Scholar
  25. [25]
    WATANABE K, NAKAGAWA E, YAMADA H, HISAMOTO H, SUZUKI K. Lithium ion selective optical fiber sensor based on a novel neutral ionophore and a lipophilic anionic dye [J]. Analytical Chemistry, 1993, 65(19): 2704–2710.CrossRefGoogle Scholar
  26. [26]
    KURIHARA K, OHTSU M, YOSHIDA T, ABE T, HISAMOTO H, SUZUKI K. Micrometer-sized sodium ion-selective optodes based on a “Tailed” neutral ionophore [J]. Analytical Chemistry, 1999, 71(16): 3558–3566.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Shu-zhen Tan (谭淑珍)
    • 1
    Email author
  • Shu Long (龙 姝)
    • 1
  • Jiao-yun Xia (夏姣云)
    • 1
  • Zhong Cao (曹 忠)
    • 1
  • Ling Zhang (张 玲)
    • 1
  • Fu-chun Gong (龚福春)
    • 1
  1. 1.School of Chemistry and Biological EngineeringChangsha University of Science and TechnologyChangshaChina

Personalised recommendations