Self-assembly constructed by perylene bisimide derivatives bearing complementary hydrogen-bonding moieties

  • Xin-guo Yang (杨新国)
  • Huan Yuan (袁 欢)
  • Qiu-li Zhao (赵秋丽)
  • Qing Yang (杨 青)Email author
  • Xian-hong Chen (陈宪宏)


An intermediate compound 2, 4-bis(laurylamino)-6-(1-(2-aminoethyl)-piperazine)-1, 3, 5-triazine was prepared by stepwise nucleophilic substitution on triazine ring by lauryl amine and subsequently 1-(2-aminoethyl)-piperazine. Then imidization of perylene-3, 4, 9, 10-tetracarboxylic acid dianhydride with 2,4-bis(laurylamino)-6-(1-(2-aminoethyl)-piperazine)-1, 3, 5-triazine was carried out to afford a novel perylene derivative bearing two melamine blocks (S2) and 1, 6, 7, 12-tetra(4-tert-butyl phenoxy)-perylene-3, 4, 9, 10-tetracarboxylic acid bisimide (S1). The hydrogen-bonding interactions between S1 and S2 were investigated by 1H NMR spectrum, UV/Vis spectrum and fluorescence spectrum. The influences on the morphologies of S1·S2 aggregates were investigated. The results show that well-defined nanofibers with a diameter of about 100 nm can be obtained by self-assembly between S1 and S2 only in CH2Cl2 solution. Based on these results, guidelines for the molecular design and self-assembly of supramolecular polymer materials are presented.

Key words

perylene bisimide self-assembly hydrogen-bonding synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BRUNSVELD L, FOLMER B J B, MEIJER E W, SIJBESMA R P. Supramolecular polymer [J]. Chem Rev, 2001, 101(12): 4071–4097.CrossRefGoogle Scholar
  2. [2]
    HOEBEN F J M, JONKHEIJM P, MEIJER E W, SCHENNING A P H J. About supramolecular assemblies of π-conjugated systems [J]. Chem Rev, 2005, 105(4): 1491–1546.CrossRefGoogle Scholar
  3. [3]
    OUALI L, KRASNIKOV V V, STALMACH U. Oligo(phenylenevinylene)/fullerene photovoltaic cells: Influence of morphology [J]. Adv Mater, 1999, 11(14): 1515–1518.CrossRefGoogle Scholar
  4. [4]
    WÜRTHNER F, THALACKER C, SAUTTER A, SCHÄRTL W, IBACH W, HOLLRICHER O. Hierarchical self-organization of perylene bisimide-melamine assemblies to fluorescent mesoscopic superstructures [J]. Chem Eur J, 2000, 6(21): 3871–3886.CrossRefGoogle Scholar
  5. [5]
    ZHANG J, HOEBEN F J M, POUDEROIJEN M J, SCHENNING A P H J, MEIJER E W, de SCHRYVER F C, de FEYTER S. Hydrogen-bonded oligo(p-phenylenevinylene) functionalized with perylene bisimide: Self-assembly and energy transfer [J]. Chem Eur J, 2006, 12(35): 9046–9055.CrossRefGoogle Scholar
  6. [6]
    WANG Y, CHEN Y, LI R, WANG S, SU W, MA P. WASIELEWSKI M R. Amphiphilic perylenetretracarboxyl diimide dimer and its application in field effect transistor [J]. Langmuir, 2007, 23(10): 5836–5842.CrossRefGoogle Scholar
  7. [7]
    MORIUCHI T, TAMURA T, HIRAO T. Self-assembly of dipeptidyl ureas: A new class of hydrogen-bonded molecular duplexes [J]. J Am Chem Soc, 2002, 124(32): 9356–9357.CrossRefGoogle Scholar
  8. [8]
    YAGAI S, KARATSU T, KITAMURA A. Binary supramolecular gels based on bismelamine cyanurate/barbiturate noncovalent polymers [J]. Chem Mater, 2004, 16(19): 3582–3585.CrossRefGoogle Scholar
  9. [9]
    DEFEYTAR S, WÜRTHNER F, MEIJER E W, SHENG YAO, ZHIGIAN C, WURTHNER F. Two-dimensional self-assembly into multicomponent hydrogen-bonded nanostructures [J]. Nano Lett, 2005, 5(1): 77–81.CrossRefGoogle Scholar
  10. [10]
    YAGAI S, MONMA Y, KAWAUCHI N, KARASTY T, KITAWURAA. Supramolecular nanoribbons and nanoropes generated from hydrogen-bonded supramolecular polymers containing perylene bisimide chromophores [J]. Org Lett, 2007, 9(6): 1137–1140.CrossRefGoogle Scholar
  11. [11]
    WÜRTHNER F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures [J]. Chem Commun, 2004(14): 1564–1579.Google Scholar
  12. [12]
    SINKS L E, RYBTCHINSKI B, LIMURA M, JUVES B A, GOSHE A T. Self-assembly of photofunctional cylindrical nanostructures based on perylene-3, 4, 9, 10-bis(dicarboximide) [J]. Chem Mater, 2005, 17(25): 6295–6303.CrossRefGoogle Scholar
  13. [13]
    WÜRTHNER F, THALACKER C, SAUTTER A. Hierarchical organization of functional perylene chromophores to mesoscopic superstructures by hydrogen bonding and π-π interactions [J]. Adv Mater, 1999, 11(9): 754–758.CrossRefGoogle Scholar
  14. [14]
    LIU Y, ZHUANG J, LIU H, LI Y, LU F, GAN H, JIU T. Self-assembly and characterization of hydrogen-bond-induced nanostructure [J]. Chem Phys Chem, 2004, 5(8): 1210–1215.CrossRefGoogle Scholar
  15. [15]
    LIU Y, XIAO S, ZHU D, ZHUANG J, LU F, LI Y, XIAO S. Self-assembly and characterization of a novel hydrogen-bonded nanostructure [J]. J Phys Chem B, 2004, 108(20): 6256–6260.CrossRefGoogle Scholar
  16. [16]
    THALACKER C, WÜRTHNER F. Chiral perylene bisimide-melamine assemblies: Hydrogen bond-directed growth of helically stacked dyes with chiroptical properties [J]. Adv Funct Mater, 2002, 12(3): 209–218.CrossRefGoogle Scholar
  17. [17]
    YANG Xin-guo, SUN Jing-zhi, LI Han-ying, CAO Jian, WANG Mang. Fluorescence switch based on a porphyrin-perylenediimde dyad [J]. Chinese Chemical Letters, 2005, 16(2): 257–260. (in Chinese)Google Scholar
  18. [18]
    XIE Bo-yu, CAO Ya-feng, SUN Jing-zhi, YANG Xin-guo, WANG Mang. Change in aggregation state of a porphyrin-perylene-diimide dyad induced by trifluoroacetic acid [J]. Chinese Science Bulletin, 2007, 52(19): 2266–2270. (in Chinese)CrossRefGoogle Scholar
  19. [19]
    STEFFENSEN M B, SIMANEK E E. Chemoselective building blocks for dendrimers from relative reactivity data [J]. Org Lett, 2003, 5(13): 2359–2361.CrossRefGoogle Scholar
  20. [20]
    PRINS L J, REINHOUDT D N, TIMMEERMAN P. Non-covalent synthesis using hydrogen bonding [J]. Angew Chem Int Ed, 2001, 123(40): 2383–2426.Google Scholar
  21. [21]
    MESSMORE B W, HULVAT J F, SONE E D, STUPP S I. Synthesis, Self-assembly, and characterization of supramolecular polymers from electroactive dendron rodcoil molecules [J]. Am Chem Soc, 2004, 126(44): 14452–14458.CrossRefGoogle Scholar
  22. [22]
    PRAVEEN V K, GEORGE S J, VARGHESE R, VIJAYAKUMAR C, AJAYAGHOSH A. Self-Assembled π-nanotapes as donor scaffolds for selective and thermally gated fluorescence resonance energy transfer (FRET) [J]. Am Chem Soc, 2006, 128(23): 7542–7550.CrossRefGoogle Scholar
  23. [23]
    GUERZO A D, OLIVE A G L, REICHWAGEN J, HOPF H, DESVERGNE J P. Energy transfer in self-assembled [n]-acene fibers involving ≥100 donors per acceptor [J]. Am Chem Soc, 2005, 127(51): 17984–17985.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Xin-guo Yang (杨新国)
    • 1
  • Huan Yuan (袁 欢)
    • 1
  • Qiu-li Zhao (赵秋丽)
    • 1
  • Qing Yang (杨 青)
    • 2
    Email author
  • Xian-hong Chen (陈宪宏)
    • 1
  1. 1.College of Materials Science and EngineeringHunan UniversityChangshaChina
  2. 2.School of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina

Personalised recommendations