First-principles lattice stability of Fe, Ru and Os

  • Hui-jin Tao (陶辉锦)Email author
  • Jian Yin (尹 健)


Lattice constants, total energies and densities of states of transition metals Fe, Ru and Os with BCC, FCC and HCP structures were calculated by the GGA+PBE functional and the ultrasoft pseudo-potential plane wave method, and compared with those of the first-principles projector augmented wave (PAW) method, CALPHAD method and experimental data. The results show that the lattice stability of this work is ΔGBCC-HCPGFCC-HCP>0, agreeing well with those of PAW method in the first-principles and CALPHAD method except for BCC-Fe. And the densities of state of HCP-Ru and Os have an obvious character of stable phase, agreeing completely with the results of the total energy calculations. Further analyses of atomic population show that the transition rate of electrons from s to p state for HCP, FCC and BCC crystals increases from Fe to Os, and a stronger cohesion, a higher cohesive energy or a more stable lattice between atoms of heavier metals are formed.

Key words

Fe Ru Os lattice stability first-principles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    SAUNDERS N, MIODOWIK A P, DINDALE A T. Metastable lattice stabilities for the elements[J]. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 1988, 12(4): 351–374.CrossRefGoogle Scholar
  2. [2]
    DINDALE A T. SGTE data for pure elements[J]. CALPHAD, 1991, 15(4): 317–425.CrossRefGoogle Scholar
  3. [3]
    JONES R O, GUNARSSON O. The density functional formalism, its applications and prospects [J]. Reviews of Modern Physics, 1989, 61(3): 689–746.CrossRefGoogle Scholar
  4. [4]
    KISSAVOS A E, SHALLCROSS S, KAUFMAN L, GRÅNÄS O, RUBAN A V, ABRIKOSOV I A. Thermodynamics of ordered and disordered phases in the binary Mo-Ru system[J]. Physical Review B, 2007, 75(18): 184203–184210.CrossRefGoogle Scholar
  5. [5]
    XIAO B, XING J D, FENG J, LI Y F, ZHOU C T, SU W, XIE X J, CHEN Y H. Theoretical study on the stability and mechanical property of Cr7C3[J]. Physica B, 2008, 403(13/16): 2273–2281.CrossRefGoogle Scholar
  6. [6]
    PENG J Z, WANG Y F, GRAY M F. First-principles study of structural stabilities and electronic properties of Mg-Nd intermetallic compounds[J]. Physica B, 2008, 403(13/16): 2344–2348.CrossRefGoogle Scholar
  7. [7]
    LV Z Q, SUN S H, JIANG P, WANG B Z, FU W T. First-principles study on the structural stability, electronic and magnetic properties of Fe2C[J]. Computational Materials Science, 2008, 42(4): 692–697.CrossRefGoogle Scholar
  8. [8]
    NAKAYAMA M, MATSUNO S, SHIRAKAWA J, WAKIHARA M. First-principles study on phase stability in LixCuSb with heusler-type structure[J]. Journal of Electrochemical Society, 2008, 155(7): 505–511.CrossRefGoogle Scholar
  9. [9]
    BRUTTI S, NGUYEN-MANH D, PETTIFOR D G. Lattice stability of Ca, Sr and Yb disilicides[J]. Intermetallics, 2006, 14(12): 1472–1486.CrossRefGoogle Scholar
  10. [10]
    GHOSH G, van de WALLE A, ASTA M. First-principles calculations of the structural and thermodynamic properties of bcc, fcc and hcp solid solutions in the Al-TM (TM=Ti, Zr and Hf) systems: A comparison of cluster expansion and supercell methods[J]. Acta Materialia, 2008, 56(13): 3202–3221.CrossRefGoogle Scholar
  11. [11]
    HILLYARD P B, GAFFNEY K J, LINDENBERG A M, ENGEMANN S, AKRE R A, ARTHUR J, BLOME C, BUCKSBAUM P H, CAVALIERI A L, DEB A, FALCONE R W, FRITZ D M, FUOSS P H, HAJDU J, KREJCIK P, LARSSON J, LEE S H, MEYER D A, NELSON A J, PAHL R, REIS D A, RUDATI J, SIDDONS D P. Carrier-density-dependent lattice stability in InSb[J]. Physical Review Letters, 2007, 98(12): 125501–125504.CrossRefGoogle Scholar
  12. [12]
    ASKER C, BELONOSHKO A B, MIKHAYLUSKIN A S, ABRIKOSOV A S. First-principles solution to the problem of Mo lattice stability[J]. Physical Review B, 2008, 77(22): 220102–220105.CrossRefGoogle Scholar
  13. [13]
    GRAD G B, BLAHA P, LUITZ J. Electronic structure and chemical bonding effects upon the bcc to Omega phase transition: Ab initio study of Y, Zr, Nb, and Mo[J]. Physical Review B, 2000, 62(19): 12743–12753.CrossRefGoogle Scholar
  14. [14]
    GUO G Y, WANG H H. Calculated elastic constants and electronic and magnetic properties of bcc, fcc, and hcp Cr crystals and thin films[J]. Physical Review B, 2000, 62(8): 5136–5143.CrossRefGoogle Scholar
  15. [15]
    SLUITER M H F. Ab initio lattice stabilities of some elemental complex structures[J]. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2006, 30(4): 357–366.CrossRefGoogle Scholar
  16. [16]
    SIN’KO G V, SMIRNOV N A. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure[J]. Journal of Physics-Condensed Matter, 2002, 14(29): 6989–7005.CrossRefGoogle Scholar
  17. [17]
    WANG Y, CURTAROLO S, JIANG C. Ab initio lattice stability in comparison with CALPHAD lattice stability[J]. CALPHAD, 2004, 28(1): 79–90.CrossRefGoogle Scholar
  18. [18]
    GHOSH G, DELSANTE S, BORZONT G, ASTA M, FERRO R. Phase stability and cohesive properties of Ti-Zn intermetallics: First-principles calculations and experimental results[J]. Acta Materialia, 2006, 54(19): 4977–4997.CrossRefGoogle Scholar
  19. [19]
    GAO M C, ROLLETT A D, WIDOM M. Lattice stability of aluminum-rare earth binary systems: A first-principles approach[J]. Physical Review B, 2008, 75(17): 174120–174135.CrossRefGoogle Scholar
  20. [20]
    MILMAN V, WINKLER B, WHITE J A, PICKARD C J, PAYNE M C, AKHMATSKAYA E V, NOBES R H. Electronic structure, properties and phase stability of inorganic crystals: A pseudopotential plane-wave study[J]. International Journal of Quantum Chemistry, 2000, 77(5): 895–910.CrossRefGoogle Scholar
  21. [21]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865–3868.CrossRefGoogle Scholar
  22. [22]
    LI Zhen-yu. Properties of novel materials from first principles[D]. Hefei: University of Science and Technology of China, 2004. (in Chinese)Google Scholar
  23. [23]
    HOHENBERG P, KOHN W. Inhomogeneous electron gas[J]. Physical Review, 1964, 136(3B): 864–871.MathSciNetCrossRefGoogle Scholar
  24. [24]
    KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): 1133–1138.MathSciNetCrossRefGoogle Scholar
  25. [25]
    BLAHA P, SCHWARZ K, SORANTIN P, TRICKEY S B. Full-potential, linearized augmented plane wave programs for crystalline systems[J]. Computer Physics Communications, 1990, 59(2): 399–415.CrossRefGoogle Scholar
  26. [26]
    JOHN P P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23): 13244–13249.CrossRefGoogle Scholar
  27. [27]
    PULAY P. Convergence acceleration of iterative sequences: The case of scf iteration [J]. Chemical Physical Letters, 1980, 73(2): 393–398.CrossRefGoogle Scholar
  28. [28]
    METHFESSEL M, PAXTON A T. High-precision sampling for Brillouin-zone integration in metals[J]. Physical Review B, 1989, 40(6): 3616–3621.CrossRefGoogle Scholar
  29. [29]
    KITTEL C. Solid state physics[M]. New York: John Wiley and Sons Inc, 1976.zbMATHGoogle Scholar
  30. [30]
    MARK W. The University of Sheffield and Webelements Ltd [EB/OL]. 2006.

Copyright information

© Central South University Press and Springer-Verlag GmbH 2009

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.School of Metallurgical Science and EngineeringCentral South UniversityChangshaChina
  3. 3.Key Laboratory of Nonferrous Materials Science and Engineering, Ministry of EducationCentral South UniversityChangshaChina

Personalised recommendations