Advertisement

Microscopic phase-field simulation of Cr atom substitution character during formation of Ll2 and DO22 phases in Ni-Cr-Al alloy

  • Zhong Chu (褚 忠)Email author
  • Zheng Chen (陈 铮)
  • Yun-xia Shi (石云霞)
  • Yan-li Lu (卢艳丽)
  • Yong-xin Wang (王永欣)
Article

Abstract

The simulations of Cr atom substitution character during the formation of Ll2 and DO22 phases in Ni-Cr-Al alloy were performed at 873 K based on microscopic phase-field model. It is found that the substitution of Cr is affected by Cr and Al contents and limits of occupation probabilities of Cr atom in Ll2 phase are present. The precipitate is single Ll2 phase when the component is less than the limit, Cr atoms substitute the Al sublattices in Ll2 phase, and both of atoms Al and Cr occupy the β-sites and complex phases Ni3(Al1−xCrx) are formed; Cr atoms enter Ni sites when Al and Cr contents exceed the limit, and substitute β-sites or both of α-and β-sites. The DO22 phase is formed at the boundary of Ll2 phase.

Key words

Ni-Cr-Al alloy microscope phase-field precipitation substitution simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    CHEN L Q, KHACHATURYAN A G. Computer simulation of decomposition reactions accompanied by a congruent ordering of the second kind [J]. Scripta Metall et Mater, 1991, 25(1): 61–66.CrossRefGoogle Scholar
  2. [2]
    CHEN L Q, KHACHATURYAN A G. Computer simulation of structural transformations during precipitation of an ordered intermetallic phase [J]. Acta Metall Mater, 1991, 39(11): 2533–2551.CrossRefGoogle Scholar
  3. [3]
    CHEN Long-qing. A computer simulation technique for spinodal decomposition and ordering in ternary systems [J]. Scripta Metall et Mater, 1993, 29(5): 683–688.MathSciNetCrossRefGoogle Scholar
  4. [4]
    RAABLE D, XIANG J Z. Computational materials science [M]. Beijing: Chemistry Industry Press, 2002: 223–235. (in Chinese)Google Scholar
  5. [5]
    KHACHATURYAN A G. Theory of structural transformations in solids [M]. New York: Wiley, 1983: 23–40.Google Scholar
  6. [6]
    PODURI R, CHEN L Q. Computer simulation of atomic ordering and compositional clustering in the pseudobinary Ni3Al-Ni3V system [J]. Acta Mater, 1998, 46(3): 1719–1729.CrossRefGoogle Scholar
  7. [7]
    ZHANG J X, CHEN L Q. Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials [J]. Acta Mater, 2005, 53(5): 2845–2855.CrossRefGoogle Scholar
  8. [8]
    SEOL D J, HU S Y, LI Y L, SHEN J, OH K H, CHEN L Q. Computer simulation of spinodal decomposition in constrained films [J]. Acta Mater, 2003, 51(10): 5173–5185.CrossRefGoogle Scholar
  9. [9]
    LIU Z H, LIU H, ZHANG X X, ZHANG M, DAI X F, HU H F, CHEN T L, WU G H. Martensitic transformation and magnetic properties of Heusler alloy Ni-Fe-Ga ribbon [J]. Physics Letters A, 2004, 329(8): 214–220.CrossRefGoogle Scholar
  10. [10]
    LU Yan-li, CHEN Zheng, LI Yong-sheng. Atomic-scale computer simulation for the coarsening mechanism of the cubic alloy including coherent strain energy [J]. Raremetal Materials and Engineering, 2006, 35(11): 1686–1690. (in Chinese)Google Scholar
  11. [11]
    ZHAO Yu-hong, ZHANG Yue, CHEN Zheng. Simulation for early precipitation process of Ni75Al4V21 alloy by microscopic phase-field model [J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(8): 978–981. (in Chinese)Google Scholar
  12. [12]
    CERMAK J, GAZDA A, ROTHOVA V. Interdiffusion in ternary Ni3Al/Ni3Al-X diffusion couples with X=Cr, Fe, Nb and Ti [J]. Intermetallics, 2003, 11(9): 939–946.CrossRefGoogle Scholar
  13. [13]
    MEKHRABOV A O, AKDENIZ M V, ARER M M. Atomic ordering characteristics of Ni3Al intermetallics with substitutional ternary additions [J]. Acta Mater, 1997, 45(3): 1077–1083.CrossRefGoogle Scholar
  14. [14]
    OCHIAI S, OYA Y, SUZUKI T. Alloys behaviour of Ni3Al, Ni3Ga, Ni3Si and Ni3Ge [J]. Acta Mater, 1984, 32(2): 289–298.CrossRefGoogle Scholar
  15. [15]
    MARTY A, BESSIERE M, BLEY F. Determination of long range order in Ni-base ternary alloys by X-ray anomalous diffraction using synchrotron radiation [J]. Acta Matall Mater, 1990, 38(2): 345–350.CrossRefGoogle Scholar
  16. [16]
    WU Y P, TSO N C, SANCHEN J M. Modeling of ternary site occupation in Ll2 ordered intermetallics [J]. Acta Mater, 1989, 37(10): 2835–2840.CrossRefGoogle Scholar
  17. [17]
    PAREIGE C, SOISSON F, MARTIN G. Ordering and phase separation in Ni-Cr-Al: Monte Carlo simulations vs three-dimensional atom probe [J]. Acta Mater, 1999, 47(6): 1889–1899.CrossRefGoogle Scholar
  18. [18]
    DUVAL S, CHAMBRLAND S, CARON P, BLVETTE D. Phase composition and chemical order in the single crystal Nickel base siperalloy MC2 [J]. Acta Metall Mater, 1994, 42(1): 185–194.CrossRefGoogle Scholar
  19. [19]
    CHU Zhong, CHEN Zheng, WANG Yong-xin, LU Yan-li. Microscopic phase-field simulation of atom substitution behavior in Ni-Cr-Al alloy [J]. Chinese Physics Letters, 2005, 22(8): 1841–1844.CrossRefGoogle Scholar
  20. [20]
    BLAVETTE D, CADAE L, DECONIHOUT B. The role of the atom probe in the study of nickel-based superalloys [J]. Materials Characterization, 2000, 44(1/2): 133–157.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Zhong Chu (褚 忠)
    • 1
    Email author
  • Zheng Chen (陈 铮)
    • 2
  • Yun-xia Shi (石云霞)
    • 1
  • Yan-li Lu (卢艳丽)
    • 2
  • Yong-xin Wang (王永欣)
    • 2
  1. 1.School of Mechanical EngineeringQingdao Technological UniversityQingdaoChina
  2. 2.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations