Advertisement

Synthesis and electrochemical properties of SnO2-polyaniline composite

  • Ze-qiang He (何则强)Email author
  • Li-zhi Xiong (熊利芝)
  • Wen-ping Liu (刘文萍)
  • Xian-ming Wu (吴显明)
  • Shang Chen (陈上)
  • Ke-long Huang (黄可龙)
Article

Abstract

The SnO2-polyaniline(SnO2-PAn) composite was prepared by microemulsion polymerization method using aniline, ammonium peroxodisulfate and SnO2 as starting materials. The SnO2-PAn composite was characterized by X-ray diffractometer, scanning electron microscope and electrochemical techniques. The results show that PAn in the composites is amorphous. PAn formed in the reaction is deposited preferentially on the SnO2 particles, giving a SnO2-PAn composite, in which SnO2 is coated with PAn. SnO2-PAn composite shows a reversible capacity of 657.6 mA·h/g and the capacity loss per cycle is only 0.092% after 80 cycles, suggesting that SnO2-PAn composite is a promising anode material for lithium ion batteries.

Key words

lithium ion battery synthesis electrochemical properties microemulsion polymerization method SnO2 polyaniline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    IDOTA Y, MATSUFUJI A, MAEKAWA Y, NIYASAKA T. Tin-based amorphous oxide: A high-capacity lithium-ion-storage material[J]. Science, 1997, 276(5317): 1395–1397.Google Scholar
  2. [2]
    COURTNEY A, DAHN J R. Electrochemical and in situ X-ray diffraction studies of the reaction of lithium with tin oxide composites[J]. J Electrochem Soc, 1997, 144(6): 2045–2052.Google Scholar
  3. [3]
    COURTNEY A, DAHN J R. Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass[J]. J Electrochem Soc, 1997, 144(9): 2943–2948.Google Scholar
  4. [4]
    HE Ze-qiang, LI Xin-hai, XIONG Li-zhi, WU Xian-ming, XIAO Zhuo-bing, MA Ming-you. Synthesis and electrochemical properties of tin oxide-based composite by rheological technique[J]. Materials Chemistry & Physics, 2005, 93(2/3): 516–520.Google Scholar
  5. [5]
    HE Ze-qiang, XIONG Li-zhi, XIAO Zhuo-bing, MA Ming-you, WU Xian-ming. Preparation and electrochemical properties of nano-SnO by sol-gel technique[J]. Chinese Journal of Inorganic Chemistry, 2006, 22(2): 253–257. (in Chinese)Google Scholar
  6. [6]
    YANG J, WINTER M, BESENHARD J O. Small particle size multiphase Li-alloy anodes for lithium-ion-batteries[J]. Solid State Ionics, 1996, 90(4): 281–287.Google Scholar
  7. [7]
    BESENHARD J O, YANG J, WINTER M. Will advanced lithiumalloy anodes have a chance in lithium-ion batteries?[J]. J Power Sources, 1997, 68(1): 87–90.Google Scholar
  8. [8]
    WINTER M, BESENHARD J O, SPAHR M E, NOVAK P. Insertion electrode materials for rechargeable lithium batteries[J]. Adv Mater, 1998, 10(10): 725–763.Google Scholar
  9. [9]
    LEE J Y, ZHANG R, LIU Z. Lithium intercalation and deintercalation reactions in synthetic graphite containing a high dispersion of SnO [J]. Electrochem Solid State Lett, 2000, 3(4): 167–170.Google Scholar
  10. [10]
    READ J, FOSTER D, WOLFENSTINE J, BEHL W. SnO2-carbon composites for lithium-ion battery anodes[J]. J Power Sources, 2001, 96(2): 277–281.Google Scholar
  11. [11]
    MA Ming-you, HE Ze-qiang, XIONG Li-zhi, LI Xin-hai, XIAO Zhuo-bing, WU Xian-bing, LIU Wen-ping. Preparation and electrochemical properties of SnO2-graphite composites by homogeneous precipitation technique[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(5): 793–798. (in Chinese)Google Scholar
  12. [12]
    QI Zhi, WU Feng. Nanosized SnO2/graphite composite as negative electrode materials for lithium ion batteries [J]. Chinese Journal of Inorganic Chemistry, 2005, 21(2): 257–260. (in Chinese)MathSciNetGoogle Scholar
  13. [13]
    BALAN L, SCHNEIDER R, WILLMANN P, BIUAUD D. Tin-graphite materials prepared by reduction of SnCl4 in organic medium: Synthesis, characterization and electrochemical lithiation[J]. J Power Sources, 2006, 161(1): 587–593.Google Scholar
  14. [14]
    GUO Z P, WANG J Z, LIU H K, DOU S X. Study of silicon/ polypyrrole composite as anode materials for Li-ion batteries[J]. J Power Sources, 2005, 146(1/2): 448–451.Google Scholar
  15. [15]
    PASQUIER A, ORSINI F, GOZDZ A S, TARASCON J M. Electrochemical behaviour of LiMn2O4-PPy composite cathodes in the 4-V region[J]. J Power Sources, 1999, 81/82(4): 607–611.Google Scholar
  16. [16]
    VEERARAGHAVAN B, PAUL J, HALA B, POPOV B. Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries[J]. J Power Sources, 2002, 109(2): 377–387.Google Scholar
  17. [17]
    ZHANG Xiang-wu. WANG Chun-sheng, APPLEBY A J, LITTL F E. Improvement in electrochemical properties of nano-tin-polyaniline lithium-ion composite anodes by control of electrode microstructure[J]. J Power Sources, 2003, 109(1): 136–141.Google Scholar
  18. [18]
    SCHNITZLER D C, MERUVIA M S, HUMMELGEN I A, ZARBIN A J G. Preparation and characterization of novel hybrid materials formed from (Ti, Sn)O2 nanoparticles and polyaniline[J]. Chem Mater, 2003, 15(24): 4658–4665.Google Scholar
  19. [19]
    HE Ze-qiang, XIONG Li-zhi, MA Ming-you, XIAO Zhuo-bing, WU Xian-ming. Synthesis and characterization of nanometer SnO2 by non-hydrolytic sol-gel approach [J]. Chinese Journal of Inorganic Chemistry, 2005, 21(11): 1691–1696. (in Chinese)Google Scholar
  20. [20]
    SHENG Yu, CHEN Jian-ding, ZHU De-qin. In-situ chemical synthesis and characterization of conducting polyaniline/manganese dioxide composites[J]. Acta Materiae Compositae Sinica, 2004, 21(4): 1–7. (in Chinese)Google Scholar
  21. [21]
    FU L J, LIU H, ZHANG H P, LI C, ZHANG T, WU Y P, HOLZE R, WU H Q. Synthesis and electrochemical performance of novel core/shell structured nanocomposites[J]. Electrochemistry Communications, 2006, 8(1): 1–4.Google Scholar
  22. [22]
    HE Ze-qiang, LI Xin-hai, WU Xian-ming, HOU Zhao-hui, LIU En-hui, DENG Ling-feng, HU Chuang-yue, TIAN Hui-peng. Preparation and electrochemical properties of nanosized tin dioxide electrode material by sol-gel process[J]. Trans Nonferrous Met Soc China, 2003, 13(4): 998–1002.Google Scholar
  23. [23]
    HE Ze-qiang, LI Xin-hai, XIONG Li-zhi, LIU En-hui, HOU Zhao-hui, WU Xian-ming, DENG Ling-feng. Soft chemical synthesis and electrochemical properties of tin oxide-based materials as anodes for lithium ion batteries[J]. J Cent South Univ Technol, 2004, 11(2): 142–146.Google Scholar
  24. [24]
    HE Ze-qiang, XIONG Li-zhi, XIAO Zhuo-bing, MA Ming-you, WU Xian-ming. Electrochemical properties of novel calcium stannate anode for lithium ion batteries[J]. Trans Nonferrous Met Soc China, 2005, 15(6): 1420–1424.Google Scholar
  25. [25]
    MACDONALD J R. Impedance spectroscopy[M]. New York: John Wiley & Sons, 1987: 69.Google Scholar
  26. [26]
    AURBACH D, EIN-ELI Y, CHUSID O, CARMELI Y, BABAI M, YAMIN H. The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable ‘Rocking-Chair’ type batteries[J]. J Electrochem Soc, 1994, 141(3): 603–610.Google Scholar

Copyright information

© Central South University 2008

Authors and Affiliations

  • Ze-qiang He (何则强)
    • 1
    • 2
    Email author
  • Li-zhi Xiong (熊利芝)
    • 1
    • 2
  • Wen-ping Liu (刘文萍)
    • 1
  • Xian-ming Wu (吴显明)
    • 1
  • Shang Chen (陈上)
    • 1
  • Ke-long Huang (黄可龙)
    • 2
  1. 1.College of Chemistry and Chemical EngineeringJishou UniversityJishouChina
  2. 2.School of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina

Personalised recommendations