Advertisement

Resistance optimization of flexes in aluminum reduction cells

  • Li Jie  (샮 蓂)Email author
  • Liu Jie  (쇵 뷜)
  • Liu Wei  (쇵 캰)
  • Lai Yan-qing  (삵퇓쟥)
  • Wang Zhi-gang  (췵횾룕)
  • Wu Yu-yun  (컩폱퓆)
Article

Abstract

The resistance arrangements of the flexes connecting with the cathode bus bar in aluminum reduction cells were generalized as three modes. In each mode the universal method to select proper resistivity of the flexes was induced respectively to insure that the current in local group of flexes was equal. Furthermore, a 350 kA aluminum reduction cell based electric field model was developed by finite element method to evaluate the effect of the method. Suggestions on selection of three modes were also put forward. The results show that the methods of resistance optimization can reduce the current variation about 180 A compared with that in original case.

Key words

bus bar design aluminum reduction cell electric field finite element method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    ZHOU Nai-jun, XIA Xiao-xia, WANG Fu-qiang. Numerical simulation on electrolyte flow field in 156 kA drained aluminum reduction cells[J]. Journal of Central South University of Technology, 2007, 14(1): 42–46.CrossRefGoogle Scholar
  2. [2]
    LIU Wei, LI Jie, LAI Yan-qing, LIU Ye-xiang. 2D finite element analysis of thermal balance for drained aluminum reduction cells[J]. Journal of Central South University of Technology, 2007, 14(6):783–787.CrossRefGoogle Scholar
  3. [3]
    TVEDT T, NEBELL H G. Newbus, a simulation program for calculation of the current distribution in the bus bar system of alumina reduction cells[C]// BOXALL L G. Light Metals 1988. Phoenix, Arizona: TMS, 1988: 567–573.Google Scholar
  4. [4]
    BUIZA J I. Electromagnetic optimization of the V-350 cell[C]// CAMPBELL P G. Light Metals 1989. Las Vegas, Nevada: TMS, 1989: 211–214.Google Scholar
  5. [5]
    YAO Shi-huan, HE Zhi-hui. Selection of bus bar optimum section in high amperage reduction cells[C]// Bickert C M. Light Metals 1990. Anaheim, California: TMS, 1990: 453–458.Google Scholar
  6. [6]
    SEVERO D S, SCHNEIDER A F, PINTO E C V, GUSBERTI V, POTOCNIK V. Modeling magnetohydrodynamics of aluminum electrolysis cells with ANSYS and CFX[C]// KVANDE H. Light Metals 2005. San Francisco, California: TMS, 2005: 475–480.Google Scholar
  7. [7]
    DUPUIS M, BOJAREVICS V, FREIBERGS J. Demonstration of thermo-electric and MHD mathematical models of a 500 kA Al electrolysis cell: Part 2[C]// ALTON T T. Light Metals 2004. Charlotte, North Carolina: TMS, 2004: 453–459.Google Scholar
  8. [8]
    DUPUIS M, BOJAREVICS V. Weakly coupled thermo-electric and MHD mathematical models of an aluminium electrolysis cell[C]// KVANDE H. Light Metals 2005. San Francisco, California: TMS, 2005: 449–454.Google Scholar
  9. [9]
    KACPRZAK D, GUSTAFSSON M J, TAYLOR M P. A finite element analysis of busbars and magnetic field of an aluminum reduction cell[J]. IEEE Transactions on Magnetics, 2006, 42(10):3192–3194.CrossRefGoogle Scholar
  10. [10]
    DUPUIS M. Using ANSYS to model aluminum reduction cell since 1984 and beyond[C]// PETERSON R D. Light Metals 2000. Nashville, Tennessee: TMS, 2000: 307–313.Google Scholar
  11. [11]
    ZHOU Nai-jun, MEI Chi, JIANG Chang-wei, ZHOU Ping, LI Jie. Coupled computation method of physics fields in aluminum reduction cells[J]. Transactions of Nonferrous Metals Society of China, 2003, 13(4): 431–437.Google Scholar
  12. [12]
    LI Jie, CHENG Ying-jun, LAI Yan-qing, ZHOU Nai-jun. Numerical simulation of current and temperature fields of aluminum reduction cells based on ANSYS[J]. Chinese Journal of Computation Physics. 2003, 20(4): 351–355. (in Chinese)Google Scholar
  13. [13]
    YANG Yi, LI Lang-ru. Magnetic field analysis of large aluminum reduction cell by using finite element method[J]. Nonferrous Metals, 2002, 8(3): 66–69. (in Chinese)Google Scholar
  14. [14]
    JIANG Chang-wei, MEI Chi, ZHOU Nai-jun, XU Shun-sheng. Computation of 3-D magnetic field in prebaked cells using scalar voltage potential method and two scalar magnetic potentials method[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(4):1021–1025. (in Chinese)Google Scholar
  15. [15]
    LIU Hai-shi, LI Jie, LI Cui-mei, ZHANG Qin-song, LIU Wei. Influence of different kinds of cathode carbon blocks on cathode thermal-field distribution in preheating process[J]. Journal of Central South University: Science and Technology, 2006, 37(1): 36–40. (in Chinese)Google Scholar
  16. [16]
    WU Jian-kang, HUANG Min, HUANG Jun, YAO Shi-huan. Computation of flow field of electrolyte-aluminium liquid and surface distortion of aluminum liquid in reduction cell[J]. The Chinese Journal of Nonferrous Metals, 2003, 13(1): 241–244. (in Chinese)Google Scholar
  17. [17]
    DUPUIS M, BOJAREVICS V. Busbar sizing modeling tools: Comparing an ANSYS based 3D model with the versatile 1D model part of MHD-Valdis[C]// GALLOWAY T J. Light Metals 2006. San Antonio, Texas: TMS, 2006: 341–346.Google Scholar
  18. [18]
    KACPRZAK D, GUSTAFSSON M J, LI L, TAYLOR M. Numerical analysis of the collector bar current distribution of a reduction cell[C]// GALLOWAY T J. Light Metals 2006. San Antonio, Texas: TMS, 2006: 367–369.Google Scholar

Copyright information

© Published by: Central South University Press, Sole distributor outside Mainland China: Springer 2008

Authors and Affiliations

  • Li Jie  (샮 蓂)
    • 1
    Email author
  • Liu Jie  (쇵 뷜)
    • 1
  • Liu Wei  (쇵 캰)
    • 1
  • Lai Yan-qing  (삵퇓쟥)
    • 1
  • Wang Zhi-gang  (췵횾룕)
    • 1
  • Wu Yu-yun  (컩폱퓆)
    • 1
  1. 1.School of Metallurgical Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations