Rheological properties of poly(m-phenyleneisophthalamide) in 1-n-butyl-3-methylimidazolium chloride

  • Zhao Ting-ting  (赵婷婷)Email author
  • Zhang Yu-mei  (张玉梅)
  • Wang Biao  (王彪)
  • Wang Hua-ping  (王华平)
  • Jiang Jian-ming  (江建明)


The steady-state rheological properties of poly (m-phenyleneisophthalamide)(PMIA) in 1-n-butyl-3-methylimidazolium chloride [Bmim]Cl and DMAc/LiCl solutions are presented. The polymer in the concentration range investigated exhibits very different behavior between [Bmim]Cl and DMAc/LiCl solutions. Unlike in DMAc/LiCl solvent, PMIA/[Bmim]Cl solution exhibits maxima in apparent viscosity-concentration plots in the range studied. PMIA shows wormlike chain model when dissolved in DMAc/LiCl while the rodlike chain model in [Bmim]Cl. The different rheological behavior shows polymer-ionic liquids interaction which leads to the supermolecular aggregates in PMIA/[Bmim]Cl solution.

Key words

poly(m-phenyleneisophthalamide) rheological properties solution ionic liquid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    HARWOOD D, AOKI H, LEE Y D, et al. Solution and rheological properties of poly(m-phenyleneisophthalamide) in dimethylacetamide/LiCl [J]. Journal of Applied Polymer Science, 1979, 23: 2155–2168.CrossRefGoogle Scholar
  2. [2]
    HARWOOD D, FELLERS J F. Rheological properties of Poly(m-phenyleneisophthalamide) in LiCl/Dimethylacetamide [J]. American Chemical Society, 1979, 12(4): 693–697.Google Scholar
  3. [3]
    MANKE C W, WILLIAMS M C. The role of solvent viscosity in dilute-solution polymer rheology [J]. Journal of Non-Newtonian Fluid Mechanics, 1985, 19: 43–52.CrossRefGoogle Scholar
  4. [4]
    WONG C P, OHNUMA H, BERRY G C, et al. Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(III) ionic liquids [J]. J Chem Soc Dalton Trans, 1995: 3467–3473.Google Scholar
  5. [5]
    SWATLOSKI R P, SPEAR S K, HOLBREY J D, et al. Dissolution of cellose with ionic liquids [J]. J Am Chem Soc, 2002, 124: 4974–4975.CrossRefGoogle Scholar
  6. [6]
    CHU S G, VENKATRAMAN S, BERRY G C, et al. Linear and nonlinear steady-state behavior [J]. American Chemical Society, 1981, 14: 939–946.Google Scholar
  7. [7]
    PEIFFER D G, KIM M W, KALADAS J. Synthesis, solution rheology and interfacial behaviour of sulphonate rigid rod polymers [J]. Polymer, 1990, 31: 2152–2156.CrossRefGoogle Scholar
  8. [8]
    DOPPERT H L, PICKEN S J. Rheological properties of aramid solutions: Transient flow and rheooptical measurements [J]. Mol Cryst Liq Cryst, 1987, 153: 109–116.Google Scholar
  9. [9]
    SWATLOSKI R P, SPEAR S K, HOLBREY J D, et al. Dissolution and processing of cellose with ionic liquids [J]. Journal of American Chemical Society, 2002, 124: 4974–4975.CrossRefGoogle Scholar
  10. [10]
    STEPHEN J P, JOZEF A, ROB V, et al. Structure and rheology of aramid solutions: X-ray scattering measurements [J]. Macromolecules, 1990, 23: 3849–3854.CrossRefGoogle Scholar
  11. [11]
    ANDRZEJ R A, JOHN S D. On the kinetic theory and rheology of a solution of rigid rodlike macromolecules [J]. American Chemical Society, 1985, 18: 1700–1710.Google Scholar
  12. [12]
    JOHN S D, SEZAR F, NICOLAS X. Rheological properties of a semidilute solution of rodlike macromolecules: Transient flows [J]. Macromolecules, 1983, 16: 1673–1677.CrossRefGoogle Scholar

Copyright information

© Central South University Press, Sole distributor outside Mainland China: Springer 2007

Authors and Affiliations

  • Zhao Ting-ting  (赵婷婷)
    • 1
    Email author
  • Zhang Yu-mei  (张玉梅)
    • 1
  • Wang Biao  (王彪)
    • 1
  • Wang Hua-ping  (王华平)
    • 1
  • Jiang Jian-ming  (江建明)
    • 1
  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghaiChina

Personalised recommendations