Advertisement

Shear thickening and shear induced band formations in solutions of wormlike micelles

  • Vishweshwara Herle
  • Peter FischerEmail author
  • Erich J. Windhab
Article

Abstract

An equimolar mixture of a cationic surfactant, cetylperidinium chloride (CPyCl) and the salt sodium salicylate (NaSal) forms wormlike micelles in aqueous solutions. Under shear, the solution shows a pronounced shear-thickening behavior, which is coupled with oscillations in shear rate and the apparent viscosity. In this shear-thickening regime the formation of shear-bands is observed, which also oscillate in position and intensity. Fast Fourier Transformations (FFT) of the oscillating shear rate and intensity signals show a single dominating frequency in the power spectrum analysis. This characteristic frequency as well as the amplitude of shear rate oscillation is found to increase with stress. Experiments performed in transparent parallel-plate geometry show dampening of the shear rate oscillations and increase in the characteristic frequency with decrease in the gap. Rheo-small angle light scattering and rheo-optical techniques confirm the formation of different kinds of structures at smaller gaps.

Key words

shear thickening wormlike micelles shear bands Fast Fourier Transform power spectrum SALS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    WUNDERLICH A M, BRUNN P O. Colloid & Ploym Sci, 1989, 267: 627.CrossRefGoogle Scholar
  2. [2]
    REHAGE H, HOFFMANN H. Mol Phys, 1991, 74: 933.CrossRefGoogle Scholar
  3. [3]
    WHEELER E K, FISCHER P, FULLER G G. J Non-Newtonian Fluid Mech, 1998, 75: 193.CrossRefGoogle Scholar
  4. [4]
    FISCHER P. Rheol Acta, 2000, 39: 234.CrossRefGoogle Scholar
  5. [5]
    FISCHER P, WHEELER E K, FULLER G G. Rheol Acta, 2002, 41: 35.CrossRefGoogle Scholar
  6. [6]
    BERRET J F, GAMEZ-CORRALES Z, LEROUGE S, et al. Eur Phys J E, 2000, 2: 343.CrossRefGoogle Scholar
  7. [7]
    BOLTENHAGEN P, HU Y, MATTHYS E F, et al. Phys Rev Lett, 1997, 79: 2359.CrossRefGoogle Scholar
  8. [8]
    LEROUGE S, DECRUPPE J P, HUMBERT C. Phys Rev Lett, 1998, 81: 5457.CrossRefGoogle Scholar
  9. [9]
    LEROUGE S, DECRUPPE J P, OLMSTEAD P. Langmuir, 2004, 20: 11355.CrossRefGoogle Scholar
  10. [10]
    CAPPELAERE E, BERRET J F, DECRUPPE J P, et al. Phys Rev E, 1997, 56: 1869.CrossRefGoogle Scholar
  11. [11]
    DECRUPPE J P, LEROUGE S, BERRET J F. Phys Rev E, 2001, 63: 022501.CrossRefGoogle Scholar
  12. [12]
    DECRUPPE J P, PONTON A. Eur Phys J E, 2003, 10: 201.CrossRefGoogle Scholar
  13. [13]
    KADOMA I A, VAN-EGMOND J W. Langmuir, 1997, 13: 4551.CrossRefGoogle Scholar
  14. [14]
    KADOMA I A, VAN EGMOND J W. Phys Rev Lett, 1998, 80: 5679.CrossRefGoogle Scholar
  15. [15]
    WU X L, PINE D J, DIXON P K. Phys Rev Lett, 1991, 66: 2408.CrossRefGoogle Scholar

Copyright information

© Central South University Press, Sole distributor outside Mainland China: Springer 2007

Authors and Affiliations

  • Vishweshwara Herle
    • 1
  • Peter Fischer
    • 1
    Email author
  • Erich J. Windhab
    • 1
  1. 1.Laboratory of Food Process Engineering, S-ENETHETH-Swiss Federal Institute of TechnologyZurichSwitzerland

Personalised recommendations