Advertisement

Preparation of activated carbons from mesophase pitch and their electrochemical properties

  • Lai Yan-qing  (赖延清)
  • Li Jing  (李晶)Email author
  • Song Hai-shen  (宋海申)
  • Zhang Zhi-an  (张治安)
  • Li Jie  (李劼)
  • Liu Ye-xiang  (刘业翔)
Article

Abstract

The influences of molar ratio of KOH to C and activated temperature on the pore structure and electrochemical property of porous activated carbon from mesophase pitch activated by KOH were investigated. The surface areas and the pore structures of activated carbons were analyzed by nitrogen adsorption, and the electrochemical properties of the activated carbons were studied using two-electrode capacitors in organic electrolyte. The results indicate that the maximum surface area of 3 190 m2/g is obtained at molar ratio of KOH to C of 5:1, the maximum specific capacitance of 122 F/g is attained at molar ratio of KOH to C of 4:1, and 800 °C is the proper temperature to obtain the maximum surface area and capacitance.

Key words

supercapacitor activated carbon mesophase pitch chemical activation pore structure electrochemical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    KOTZ R, CARLEN M. Principle and application of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(15/16): 2483–2498.CrossRefGoogle Scholar
  2. [2]
    VIX-GUTERL C, SAADALLAH S. Supercapacitor electrodes from new ordered porous carbon materials obtained by a templating procedure[J]. Materials Science and Engineering B, 2004, B108(1/2): 148–155.CrossRefGoogle Scholar
  3. [3]
    SARANGAGAPANI S, TILAK B V, CHEN C P. Materials for electrochemical capacitors[J]. J Electrochem Soc, 1996, 143(11): 3791–3798.CrossRefGoogle Scholar
  4. [4]
    BURKE A. Ultracapacitors: Why, how, and where is the technology[J]. Journal of Power Sources, 2000, 91(1): 37–50.MathSciNetCrossRefGoogle Scholar
  5. [5]
    CONWAY B E, PELL W G. Power limitations of supercapacitor operation associated with resistance and capacitance distribution in porous electrode devices[J]. Journal of Power Sources, 2002, 105(2): 169–181.CrossRefGoogle Scholar
  6. [6]
    HANG Shi. Activated carbons and double layer capacitance[J]. Electrochimica Acta, 1996, 41(10): 1633–1639.CrossRefGoogle Scholar
  7. [7]
    WU F C, TSENG R L, HU C C, et al. Effects of pore structure and electrolyte on the capacitive characteristics of steam-and KOH-activated carbons for supercapacitors[J]. Journal of Power Sources, 2005, 144(1): 302–309.CrossRefGoogle Scholar
  8. [8]
    MERINO C, SOTO P, VILAPLANA-ORTEGO E, et al. Carbon nanofibres and activated carbon nanofibres as electrodes in supercapacitors[J]. Carbon, 2005, 43(3): 551–557.CrossRefGoogle Scholar
  9. [9]
    QU De-yang, SHI Hang. Studies of activated carbons used in double-layer capacitors[J]. Journal of Power Sources, 1998, 74(1): 99–107.MathSciNetCrossRefGoogle Scholar
  10. [10]
    LOZANO-CASTELLÓ D, LILLO-RÓDENAS M A, CAZORLA-AMORÓS D, et al. Preparation of activated carbons from Spanish anthracite: I. Activation by KOH[J]. Carbon, 2001, 39(5): 741–749.CrossRefGoogle Scholar
  11. [11]
    AHMADPOUR A, DO D D. Preparation of activated carbon from macadamia nutshell by chemical activation[J]. Carbon, 1997, 35(12): 1723–732.CrossRefGoogle Scholar
  12. [12]
    MOLINA-SABIO M, RODRÍGUEZ-REINOSO F. Role of chemical activation in the development of carbon porosity[J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2004, 241: 15–25.CrossRefGoogle Scholar
  13. [13]
    BABEL K, JUREWICZ K. KOH activated carbon fabrics as supercapacitor material[J]. Journal of Physics and Chemistry of Solids, 2004, 65(2/3): 275–280.CrossRefGoogle Scholar
  14. [14]
    LI Jing, LI Jie, LAI Yan-qing, et al. Influence of KOH activation techniques on pore structure and electrochemical property of carbon electrode materials[J]. Journal of Central South University of Technology, 2006, 13(4): 360–366.CrossRefGoogle Scholar
  15. [15]
    TENG H S, WANG S C. Preparation of porous carbons from phenol-formaldehyde resins with chemical and physical activation[J]. Carbon, 2000, 38(6): 817–824.CrossRefGoogle Scholar
  16. [16]
    CARVALHO A P, CARDOSO B, PIRES J, et al. Preparation of activated carbons from cork waste by chemical activation with KOH[J]. Carbon, 2003, 41(14): 2873–2876.CrossRefGoogle Scholar
  17. [17]
    BARBIERI O, HAHN M, HERZOG A, et al. Capacitance limits of high surface area activated carbons for double layer capacitors[J]. Carbon, 2005, 43(6): 1303–1310.CrossRefGoogle Scholar
  18. [18]
    KIERZEK K, FRACKOWIAK E, LOTA G, et al. Electrochemical capacitors based on highly porous carbons prepared by KOH activation[J]. Electrochimica Acta, 2004, 49(4): 515–523.CrossRefGoogle Scholar
  19. [19]
    WU F C, TSENG R L, HU C C, et al. The capacitive characteristics of activated carbons: Comparisons of the activation methods on the pore structure and effects of the pore structure and electrolyte on the capacitive performance[J]. Journal of Power Sources, 2006, 159(2): 1532–1542.CrossRefGoogle Scholar

Copyright information

© Central South University Press, Sole distributor outside Mainland China: Springer 2007

Authors and Affiliations

  • Lai Yan-qing  (赖延清)
    • 1
  • Li Jing  (李晶)
    • 1
    Email author
  • Song Hai-shen  (宋海申)
    • 1
  • Zhang Zhi-an  (张治安)
    • 1
  • Li Jie  (李劼)
    • 1
  • Liu Ye-xiang  (刘业翔)
    • 1
  1. 1.School of Metallurgical Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations