Preparation and properties of pitch carbon based supercapacitor

  • Liu Ye-xiang  (刘业翔)
  • Li Jing  (李晶)Email author
  • Lai Yan-qing  (赖延清)
  • Song Hai-sheng  (宋海申)
  • Zhang Zhi-an  (张治安)


Using the mesophase pitch as precursor, KOH and CO2 as activated agents, the activated carbon electrode material was fabricated by physical-chemical combined activated technique for supercapacitor. The influence of activated process on the pore structure of activated carbon was analyzed and 14 F supercapacitor with working voltage of 2.5 V was prepared. The charge and discharge behaviors, the properties of cyclic voltammetry, specific capacitance, equivalent serials resistance (ESR), cycle properties, and temperature properties of prepared supercapacitor were examined. The cyclic voltammetry curve results indicate that the carbon based supercapacitor using the self-made activated carbon as electrode materials shows the desired capacitance properties. In 1 mol/L Et4NBF4/AN electrolyte, the capacitance and ESR of the supercapacitor are 14.7 F and 60 mΩ, respectively. The specific capacitance of activated carbon electrode materials is 99.6 F/g; its energy density can reach 2.96 W·h/kg under the large current discharge condition. There is no obvious capacitance decay that can be observed after 5000 cycles. The leakage current is below 0.2 mA after keeping the voltage at 2.5 V for 1 h. Meanwhile, the supercapacitor shows desired temperature property; it can be operated normally in the temperature ranging from −40 °C to 70 °C.

Key words

carbon based supercapacitor physical-chemical combined activation specific capacitance equivalent serials resistance temperature property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    KOTZ R, CARLEN M. Principle and application of electrochemical capacitors[J]. Electrochimica Acta, 2000, 54(11): 2483–2498.CrossRefGoogle Scholar
  2. [2]
    BONNEFOI L, SIMON P, FAUVARQUE J F, et al. Electrode optimisation for carbon power supercapacitors[J]. Power Source, 1999, 87(2): 1113–1119.Google Scholar
  3. [3]
    WANG Xiao-feng, RUAN Dian-bo, WANG Da-zhi. Hybrid electrochemical supercapacitors based on polyaniline and activated carbon electrodes[J]. Acta Phys Chim Sin, 2005, 21(3): 261–266.Google Scholar
  4. [4]
    LAI Yan-qing, LI Jing, LI Jie, et al. Preparation and electrochemical characterization of C/PANI composite electrode materials[J]. Journal of Central South University of Technology, 2006, 13(4): 353–359.CrossRefGoogle Scholar
  5. [5]
    LI Jing, LI Jie, LAI Yan-qing, et al. Influence of KOH activation techniques on pore structure and electrochemical property of carbon electrode materials[J]. Journal of Central South University of Technology, 2006, 13(4): 360–366.CrossRefGoogle Scholar
  6. [6]
    VIX-GUTERL C, SAADALLAH S. supercapacitor electrodes from new ordered porous carbon materials obtained by a template procedure[J]. Materials Science and Engineering B, 2004, B108(2): 148–155.CrossRefGoogle Scholar
  7. [7]
    WANG Yong-gang, ZHANG Xiao-gang. Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites[J]. Electrochemical Acta, 2004, 49(12): 1957–1962.CrossRefGoogle Scholar
  8. [8]
    PEDRO G R, MALGORZATA C, KARINA C G, et al. Hybrid organic-inorganic nanocomposite materials for application in solid-state electrochemical supercapacitors[J]. Electrochemistry Communications, 2003, 5(2): 149–153.CrossRefGoogle Scholar
  9. [9]
    CONWAY B F. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage[J]. Journal of Electrochemical Society, 1991, 6(1): 1439–1448.Google Scholar
  10. [10]
    PASSERINI V, VIDAKOVIC T, DEKANSKI A, et al. The properties of carbon-supported hydrous ruthenium oxide obtained from RuOxHy sol[J]. Electrochimica Acta, 2003, 48(25/26): 3805–3813.Google Scholar
  11. [11]
    LI Wen-cui, REICHENAUER G, FRACKE J, et al. Carbon aerogel derived from cresol-resorcinol-formaldehyde for supercapacitor[J]. Carbon, 2002, 40(12): 2955–2959.CrossRefGoogle Scholar
  12. [12]
    FRACKOWIAK E, JUREWICZ K, DELPEUX S, et al. Nanotubular materials for supercapacitor[J]. Journal of Power Source, 2001, 98(1): 822–825.CrossRefGoogle Scholar
  13. [13]
    KIM Y J, HORIE Y, MATSUZAWA Y, et al. Structure features necessary to obtain a high specific capacitance in electric double layer capacitor[J]. Carbon, 2004, 42(12/13): 2423–2432.CrossRefGoogle Scholar
  14. [14]
    QU De-yang. Studies of the activated carbon used in double-layer supercapacitors[J]. Journal of Power Source, 2002, 109(1): 403–411.CrossRefGoogle Scholar
  15. [15]
    PORTET C, TABERNA P L, SIMON P, et al. Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications[J]. Electrochimica Acta, 2004, 49(9): 905–912.CrossRefGoogle Scholar
  16. [16]
    LOZANO-CASTELLÓ D, LILLO-RÓDENAS M A, CAZORLA-AMORÓS D, et al. Preparation of activated carbons from Spanish anthracite I: Activation by KOH[J]. Carbon, 2001, 39(5): 741–749.CrossRefGoogle Scholar
  17. [17]
    LILLO M A, JUAN-JUAN J, CAZORLA-AMORÓS D, et al. About reaction occurring during chemical activation with hydroxides[J]. Carbon, 2004, 42(7): 1365–1369.Google Scholar

Copyright information

© Central South University Press, Sole distributor outside Mainland China: Springer 2007

Authors and Affiliations

  • Liu Ye-xiang  (刘业翔)
    • 1
  • Li Jing  (李晶)
    • 1
    Email author
  • Lai Yan-qing  (赖延清)
    • 1
  • Song Hai-sheng  (宋海申)
    • 1
  • Zhang Zhi-an  (张治安)
    • 1
  1. 1.School of Metallurgical Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations