Advertisement

Effect of sintering atmosphere on microstructure and properties of TiC based cermets

  • Zhou Shu-zhu  (周书助)Email author
  • Wang She-quan  (王社权)
  • Wang Lin-sen  (王零森)
  • Ding Ze-liang  (丁泽良)
Article

Abstract

The effect of the sintering atmospheres (vacuum, N2, Ar) on the microstructures and properties of the TiC based cermets was studied using XRD, SEM/BSE and energy dispersive spectrometer. Compared with the alloy sintered in vacuum, the carbon content of the specimen sintered in N2 and Ar is lower by 0.5%; and the nitrogen content is higher by 0.3% when sintered in nitrogen. The central part of the ring structure may be carbide with either a high W or Ti content. The ring structures are (Ti, W, Ta, Mo, Co, Ni)C solid solutions with different metallic elements and distributions. The composition of the binder phase is (Co, Ni) solid solution with different Ti, W, Ta, Mo, C contents. The structures are uniform for the cermets sintered in vacuum and the properties are the best. When sintered in Ar or N2, the O2 and N2 in the atmosphere take part in the sintering reaction to break the carbon balance in the cermets to form a shell structure and defects, which results in poor density, microhardness (HV) and transverse rupture strength (TRS).

Key words

TiC based cermets sintering atmosphere microstructure mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    TATSUZAWA K, MATSUBARA H, KIHARA J, IWAMA K. Preparation of TiC-Ni cermets using composite powders[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1990, 37(7): 1009–1012.CrossRefGoogle Scholar
  2. [2]
    KINOSHITA S, UEKI M, SUZUKI H. Creep characteristics of TiC-Mo2C-Ni cermet sintered after nitrification in the course of raising temperature[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1993, 40(8): 820–822.CrossRefGoogle Scholar
  3. [3]
    TOKUMOTO K, SHINOAKI H, KITADA T, SAKAGUCHI S. Microstructures and mechanical properties of Ti-M-TiC(M:Cr,Mo,W) sintered hard alloy[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1994, 41(1): 27–32.CrossRefGoogle Scholar
  4. [4]
    SABATELLO S, FRAGE N, DARIEL M P. Graded TiC-based cermets[J]. Materials Science and Engineering A 2000, 288(1): 12–18.CrossRefGoogle Scholar
  5. [5]
    NOMURA N, YOSHIMI K, KONNO T, HANADA S. Fracture toughness improvement of TiC by Nb and Mo precipitates[J]. Journal of Materials Science Letters, 2000, 19(21): 1879–1881.CrossRefGoogle Scholar
  6. [6]
    MATSUBARA H, SHIN S G, SAKUMA T. Growth of carbide particles in TiC-Ni and TiC-Mo2C-Ni cermets during liquid phase sintering[J]. Materials Transactions JIM, 1991, 32(10): 951–956.CrossRefGoogle Scholar
  7. [7]
    CHUN D I, KIM D Y, EUN K Y. Microstructural evolution during the sintering of TiC-Mo-Ni cermets[J]. Journal of the American Ceramic Society, 1993, 76(8): 2049–2052.CrossRefGoogle Scholar
  8. [8]
    YAMAMOTO T, JAROENWORALUCK A, IKUHARA Y, SAKUMA T. Nanoprobe analysis of core-rim structure of carbides in TiC-20wt%Mo2C-20wt%Ni cermet[J]. Journal of Materials Research, 1999, 14(11): 4129–4131.CrossRefGoogle Scholar
  9. [9]
    ZARIPOV N G, KABIROV R R, BLOSHENKO V N. Structural peculiarities of cermets design based on titanium carbide[J]. Journal of Materials Science, 1996, 31(19): 5227–5230.CrossRefGoogle Scholar
  10. [10]
    CHOI K, CHOI J W, KIM D Y, HWANG N M. Effect of coalescence on the grain coarsening during liquid-phase sintering of TaC-TiC-Ni cermets[J]. Acta Materialia, 2000, 48(12): 3125–3129.CrossRefGoogle Scholar
  11. [11]
    LINDAHL P, ROLANDER U, ANDRÉN H Ō. Atom-probe analysis of the binder phase in TiC-TiN-Mo2C-(Ni,Co) cermets[J]. International Journal of Refractory Metals and Hard Materials, 1993–1994, 12(3): 115–119.CrossRefGoogle Scholar
  12. [12]
    ANDRÉN H Ō, ROLANDER U, LINDAHL P. Phase composition in cermeted carbides and cermets[J]. International Journal of Refractory Metals and Hard Materials, 1993–1994, 12(3): 107–113.CrossRefGoogle Scholar
  13. [13]
    KINOSHITA S, UEKI M, SUZUKI H. Cutting performance of titanium carbide based cermet nitrified during the course of sintering[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1994, 41(2): 152–155.CrossRefGoogle Scholar
  14. [14]
    ZACKRISSON J, ROLANDER U, WEINL G, ANDREN H O. Microstructure of the surface zone in a heat-treat cermet material[J]. International Journal of Refractory Metals and Hard Materials, 1998, 16: 315–322.CrossRefGoogle Scholar
  15. [15]
    ETTMAYER P, KOLASKA H, DREYER K. Effect of the sintering atmosphere on the properties of cermets[J]. Powder Metall Int, 1991, 23(4): 224–229.Google Scholar
  16. [16]
    CAO We-bin, LI Jiang-tao, GE Chang-chun. Design and fabrication of TiC-based symmetrically compositional functional graded materials[J]. Materials and Design, 2001, 22(1): 45–51.CrossRefGoogle Scholar

Copyright information

© Published by: Central South University Press, Sole distributor outside Mainland China: Springer 2007

Authors and Affiliations

  • Zhou Shu-zhu  (周书助)
    • 1
    • 2
    Email author
  • Wang She-quan  (王社权)
    • 2
  • Wang Lin-sen  (王零森)
    • 2
  • Ding Ze-liang  (丁泽良)
    • 1
  1. 1.Department of MetallurgyHunan University of IndustryZhuzhouChina
  2. 2.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations