Advertisement

Isolation and characterization of Acidithiobacillus caldus from several typical environments in China

  • Zhou Hong-bo  (周洪波)Email author
  • Liu Xi  (刘晰)
  • Fu Bo  (符波)
  • Qiu Guan-zhou  (邱冠周)
  • Huo Qiang  (霍强)
  • Zeng Wei-min  (曾伟民)
  • Liu Jian-she  (柳建设)
  • Chen Xin-hua  (陈新华)
Article

Abstract

Six strains of moderately thermophilic sulfur-oxidizing bacteria were isolated from several different typical environments in China. The identities of the isolates were confirmed by analyses of their 16S rRNA genes, and some key physiological traits. The isolates are Gram negative, rod-shaped bacteria, their optimal temperature and pH value for growth are 45–50 °C and 2.5–3.5 respectively. They are autotrophic and used elemental sulfur, sodium thiosulfate and potassium tetrathionate as electron donor, while a little glucose stimulated their growth. 16S rDNA sequences analysis reveals that the strains are phylogenetically clustered to Acidithiobacillus caldus.

Key words

acidothermophile biochemical traits 16S rDNA sequence Acidithiobacillus caldus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    DENG Jing-shi. Bioleaching of Nickel Containing Pyrite by Moderately Thermophilic Bacteria[D]. Kunming: Kunming University of Science and Technology, 2002. (in Chinese)Google Scholar
  2. [2]
    RAWLINGS D E. Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates[J]. Microbial Cell Factories, 2005, 5(4): 13–18.CrossRefGoogle Scholar
  3. [3]
    OLSON G J, BRIERLEY J A, BRIERLEY C L. Bioleaching review B: Processing in bioleaching: applications of microbial processes by the minerals industries[J]. Appl Microbiol Biotechnol, 2003, 63(3): 249–257.CrossRefGoogle Scholar
  4. [4]
    ROHWERDER T, GEHRKE T, KINZLER K, et al. Bioleaching review A: Progress in bioleaching fundamentals and mechanisms of bacterial sulfide oxidation[J]. Appl Microbiol Biotechnol, 2003, 63(3): 239–248.CrossRefGoogle Scholar
  5. [5]
    ZHOU Hong-bo, LIU Xi, QIU Guan-zhou, LIU Jian-she, et al. Immobilization of Acidithiobacillus ferrooxidans and ferric iron production[J]. Trans Nonferrous Met Soc China, 2006, 16(4): 931–936.CrossRefGoogle Scholar
  6. [6]
    KELLY D P, WOOD A P. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov.[J]. Syst Evol Microbiol, 2000, 50(2): 511–516.CrossRefGoogle Scholar
  7. [7]
    NAOKO O, MARIEKIE G, HALLBERG B, et al. Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation[J]. Appl Environ Microbiol, 2003, 69(4): 1936–1943.CrossRefGoogle Scholar
  8. [8]
    FOUCHERA S, BRUNETA F B, D’HUGUESA P, et al. Evolution of the bacterial population during the batch bioleaching of a cobaltiferous pyrite in a suspended solids bubble column and comparison with a mechanically agitated reactor[J]. Hydrometallurgy, 2003, 71(1): 5–12.CrossRefGoogle Scholar
  9. [9]
    DOPSON M, LINDSTROM E B. Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite[J]. Microbial Ecology, 2004, 48(1): 19–28.CrossRefGoogle Scholar
  10. [10]
    RAWLINGS D E, CORAM N J, GARDNER M N, et al. Thiobacillus caldus and Leptospirillium ferrooxians are widely distributed in continuous-flow biooxidation tanks used to treat a variety of metal-containing ores and concentrates [C]// AMILS R, BALLESTER A. Biohydrometrallurgy and the Environment Toward the Mining of the 21st Century. Part A. Amsterdam: Elsevier Press, 1999: 773–778.Google Scholar
  11. [11]
    ROBERTSON W J, KINNUNEN P H M, PLUMB P D, et al. Moderately thermophilic ferrous-iron oxidizing bacteria isolated from a pyretic coal deposit showing spontaneous combustion [J]. Minerals Engineering, 2002, 15(11): 815–822.CrossRefGoogle Scholar
  12. [12]
    QIU Guan-zhou, FU Bo, ZHOU Hong-bo, et al. Isolation of a strain of Acidithiobacillus caldus and it’s role in bioleaching of chalcopyrite[J]. World J Microbiol Biotechnol, 2007, In Press.Google Scholar
  13. [13]
    DOPSON M, BÖRJE L E. Potential role of Thiobacillus caldus in arsenopyrite bioleaching[J]. Appl Environ Microbiol, 1999, 65(1): 36–40.Google Scholar
  14. [14]
    MARCHESI J R, SATO T, WEIGHTMAN A J, et al. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA[J]. Appl Environ Microbiol, 1998, 64(2): 795–799.Google Scholar
  15. [15]
    RAWLINGS D E. Heavy metal mining using microbes[J]. Annual Review of Microbiology, 2002, 56: 65–91.CrossRefGoogle Scholar
  16. [16]
    General test method in salt industry-determination of sulfate ion, China. GB/T 13025.8-91. https://doi.org/www.foodmate.net/standard/sort/3/4882.html
  17. [17]
    SEMENZA M, VIERA M, CURUTCHET G, et al. The role of Acidithiobacillus caldus in the bioleaching of metal sulfides[J]. Latin Am Appl Research, 2002, 32(4): 303–306Google Scholar

Copyright information

© Published by: Central South University Press, Sole distributor outside Mainland China: Springer 2007

Authors and Affiliations

  • Zhou Hong-bo  (周洪波)
    • 1
    Email author
  • Liu Xi  (刘晰)
    • 1
  • Fu Bo  (符波)
    • 1
  • Qiu Guan-zhou  (邱冠周)
    • 1
  • Huo Qiang  (霍强)
    • 1
  • Zeng Wei-min  (曾伟民)
    • 1
  • Liu Jian-she  (柳建设)
    • 1
  • Chen Xin-hua  (陈新华)
    • 2
  1. 1.School of Minerals Processing and BioengineeringCentral South UniversityChangshaChina
  2. 2.Key Laboratory of Marine Biogentic Resources of State Oceanic AdministrationXiamenChina

Personalised recommendations