Advertisement

Optimizing pyrolysis of resin carbon for anode of lithium ion batteries

  • Guo Hua-jun Email author
  • Li Xin-hai 
  • Zhang Xin-ming 
  • Wang Zhi-xing 
  • Peng Wen-jie 
  • Zhang Bao 
Article

Abstract

Pyrolytic resin carbon anode for lithoum ion batteries was prepared from thermosetting phenolic resin. Pyrolysis of the primary phenolic resin and the dewatered one was studied by thermal gravimetric analysis. Structures and characteristics of the carbon materials were determined by X-ray diffraction, Brunauer-Emmer-Teller surface area analysis and electrochemical measurements. With the increase of pyrolyzing temperature and soaking time, the resin carbon material has larger crystallite sizes of Lc and La, lower specific surface area, smaller irreversible capacity and higher initial coulombic efficiency. The pyrolyzing temperature and soaking time are optimized to be 1 050 °C and 2 h. The resin carbon anode obtained under the optimum conditions shows good electrochemical performances with reversible capacity of 387 mA · h/g and initial coulombic efficiency of 69.1%.

Key words

lithium ion battery carbon phenolic resin anode 

CLC number

TM912.9 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    GUO Hua-jun, LI Xin-hai, WANG Zhi-xing, et al. Mild oxidation treatment of graphite anode for Li-ion batteries[J]. J Cent South Univ Technol, 2005, 12(1): 50–54.CrossRefGoogle Scholar
  2. [2]
    Hongyu W, Masaki Y, Takeshi A, et al. Characterization of carbon-coated natural graphite as a lithium ion battery anode material [J]. J Electrochem Soc, 2002, 149(4): 499–503.CrossRefGoogle Scholar
  3. [3]
    GUO Hua-jun, LI Xin-hai, WANG Zhi-xing, et al. Effect of lithium or aluminum substitution on the characteristics[J]. Rare Metals, 2003, 22(4): 280–284.Google Scholar
  4. [4]
    Katsunori Y, Atsushi Y, Yoshinori K, et al. Carbon hybrids graphite-hard carbon and graphite-coke as negative electrode materials for lithium secondary batteries charge/discharge characteristics [J]. J Electrochem Soc, 2002, 149(7): A804–807.CrossRefGoogle Scholar
  5. [5]
    Sanki G, Winans R E, Carrako K A. New carbon electrodes for secondary lithium batteries[J]. J Electrochem Soc, 1996, 143(5): 95–98.CrossRefGoogle Scholar
  6. [6]
    Tokumitsu K, Mabuchi A, Fujimota H, et al. Electrochemical insertion of lithium into carbon synthesized from condensed aromatics [J]. J Electrochem Soc, 1996, 143(7): 2235–2239.CrossRefGoogle Scholar
  7. [7]
    GUO Hua-jun, LI Xin-hai, WANG Zhi-xing, et al. Si-doped composite carbon as anode of lithium ion batteries[J]. Transactions of Nonferrous Metals Society of China, 2003, 13(5): 1062–1065.Google Scholar
  8. [8]
    Jung Y, Suh M C, Shim S C, et al. Lithium insertion into disordered carbons prepared from organic polymers[J]. J Electrochem Soc, 1998, 145(9): 3123–3129.CrossRefGoogle Scholar
  9. [9]
    Wu Y P, Rahm E, Holze R. Carbon anode materials for lithium ion batteries[J]. Journal of Power Sources, 2003, 114: 228–236.CrossRefGoogle Scholar
  10. [10]
    Edward B, Dahn J R. Reduction of the irreversible capacity in hard-carbon anode materials prepared form sucrose for Li-ion batteries[J]. J Electrochem Soc, 1998, 145(6): 1977–1981.CrossRefGoogle Scholar
  11. [11]
    Peled E, Eshkenazi V, Rosenberg Y. Study of lithium insertion in hard carbon made from cotton wool [J]. Journal of Power Sources, 1998, 76: 153–158.CrossRefGoogle Scholar
  12. [12]
    Wang S, Yata S, Nagano J, et al. A new carbonaceous material with large capacity and high efficiency for rechargeable Li-ion batteries[J]. J Electrochem Soc, 2000, 147(7): 2498–2502.CrossRefGoogle Scholar
  13. [13]
    Shin R M, Takahiro H, Michiya T. et al. Reduction of irreversible capacities of amorphous carbon materials for lithium ion battery anodes by Li2CO3 addition [J]. Carbon, 2004, 42(4): 837–842.CrossRefGoogle Scholar
  14. [14]
    Xiang H Q, Fang S B, Jiang Y Y. Carbonaceous anodes for lithium ion batteries prepared from phenolic resins with different cross-linking dendisties [J]. J Electrochem Soc, 1997, 144(7): 187–190.CrossRefGoogle Scholar
  15. [15]
    Inagaki M. Textures in carbon materials[J]. New Carbon, 1999, 14(2): 1–13.Google Scholar
  16. [16]
    SENG Shi-Xiong. Technology of X-ray Diffraction [M]. Beijing: Metallurgical Industry Press, 1986. (in Chinese)Google Scholar

Copyright information

© Central South University 2006

Authors and Affiliations

  • Guo Hua-jun 
    • 1
    Email author
  • Li Xin-hai 
    • 1
  • Zhang Xin-ming 
    • 2
  • Wang Zhi-xing 
    • 1
  • Peng Wen-jie 
    • 1
  • Zhang Bao 
    • 1
  1. 1.School of Metallurgical Science and EngineeringCentral South UniversityChangshaChina
  2. 2.School of Materials Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations