Characteristics of magnetic Fe3O4 nanoparticles encapsulated with human serum albumin

  • He Han-wei Email author
  • Liu Hong-jiang 
  • Zhou Ke-chao 
  • Wang Wei 
  • Rong Peng-fei 


Magnetic nanoparticles (Fe3O4) were prepared by chemical precipitation method using Fe2+ and Fe3+ salts with sodium hydroxide in the nitrogen atmosphere. Fe3O4 nanoparticles were coated with human serum albumin (HSA) for magnetic resonance imaging as contrast agent. Characteristics of magnetic particles coated or uncoated were carried out using scanning electron microscopy and X-ray diffraction. Zeta potentials, package effects and distributions of colloid particles were measured to confirm the attachment of HSA on magnetic particles. Effects of Fe3O4 nanoparticles coated with HSA on magnetic resonance imaging were investigated with rats. The experimental results show that the adsorption of HSA on magnetic particles is very favorable to dispersing of magnetic Fe3O4 particles, while the sizes of Fe3O4 particles coated are related to the molar ratio of Fe3O4 to HSA. The diameters of the majority of particles coated are less than 100 nm. Fe3O4 nanoparticle coated with HSA has a good biocompatibility and low toxicity. This new contrast agent has some effects on the nuclear magnetic resonance imaging of liver and the lowest dosage is 20 µmol/kg for the demands of diagnosis.

Key words

Fe3O4 nanoparticle human serum albumin chemical precipitation method magnetic resonance imaging contrast agent 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Liu C, Klemmer T J, Shukla N, et al. Oxidation of FePt nanoparticles[J]. J Magn Magn Mater, 2003, 266(1–2): 96–101.CrossRefGoogle Scholar
  2. [2]
    Jeff W M B, Rodney A B, Bruce M M, et al. Relaxometry, magnetometry, and EPR evidence for three magnetic phases in the MR contrast agent MION – 46L [J]. J Magn Magn Mater, 1999, 194(1–3): 217–223.Google Scholar
  3. [3]
    Vander-Zaag P J, Noordermeer A, Johnson M T, et al. Coment on “size-dependent lurid temperature in nanoscale MnFe2O4 particles” [J]. Phys Rev Lett, 1992, 68(20): 3112.CrossRefGoogle Scholar
  4. [4]
    Liu C, Zhang Z J. Sized-dependent superparamagnetic properties of Mn spinel ferrite nanoparticles synthesized from reverse micelles[J]. Chem Mater, 2001, 13(6): 2092–2096.CrossRefGoogle Scholar
  5. [5]
    Cuyper M D, Joniau M. Magnetoproteoliposomes[J]. J Magn Magn Mater, 1993, 122(1–3): 340–342.CrossRefGoogle Scholar
  6. [6]
    Lee S J, Jeong J R, Shin S C, et al. Nanoparticles of magnetic ferric oxides encapsulated with poly(D, L latide-co-glycolide) and their applications to magnetic resonance imaging contrast agent [J]. J Magn Magn Mater, 2004, 272–276(3): 2432–2433.CrossRefGoogle Scholar
  7. [7]
    Knopp M V, Teng-Kobligk H V, Floemer F. Contrast agents for MRA: Future direction[J]. J Magn Reson Image, 1999, 10(3): 314–316.CrossRefGoogle Scholar
  8. [8]
    Raj K, Moskowitz R. Commercial applications of ferrofluids[J]. J Magn Magn Mater, 1990, 85(1–3): 233–245.CrossRefGoogle Scholar
  9. [9]
    Kim D K, Zhang Y, Kehr J, et al. Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain[J]. J Magn Magn Mater, 2001, 225(1–2): 256–261.CrossRefGoogle Scholar
  10. [10]
    Zavaljevski A, Holland S K, Dhawan A P, et al. Multilevel computed hemodynamic parameter maps from dynamic perfusion MRI[J]. IEEE Transactions, 1999, 48(3): 711–720.Google Scholar
  11. [11]
    Tiefenauer L X, Tschirky A, Kühne G, et al. In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI[J]. Magn Reson Imaging, 1996, 14(4): 391–402.CrossRefGoogle Scholar
  12. [12]
    Babes L, Denizot B, Tanguy G, et al. Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study[J]. J Coll Inter Sci, 1999, 212(9): 474–482.CrossRefGoogle Scholar
  13. [13]
    Lemoine D, Francois C, Kedzierewicz F, et al. Stability study of nanoparticles of poly(-caprolactone), poly(D,L-lactide) and poly(D,L-lactide-coglycolide) [J]. Biomaterials, 1996, 17(22): 2191–2197.CrossRefGoogle Scholar
  14. [14]
    Peters T J. All about albumin biochemistry, genetics and medical applications[M]. San Diego: Academic Press, 1996.Google Scholar
  15. [15]
    Bendedouch D, Chen S H. Structure and interparticle interaction of bovine serum albumin in solution studied by small-angle neutron scattering [J]. J Phys Chem, 1983, 87(9): 1473–1477.CrossRefGoogle Scholar
  16. [16]
    Zhou X Z, Caravan P, Clarkson R B, et al. On the philosophy of optimizing contrast agents. An analysis of 1H NMRD profiles and ESR lineshapes of the Gd (III) complex MS-325 + HSA[J]. J Magn Reson, 2004, 167(1): 147–160.CrossRefGoogle Scholar
  17. [17]
    Tiffany S D, Elizabeth F M, Cynthia K L. Analysis of protein/ligand interactions with NMR diffusion measurements: the importance of eliminating the protein background[J]. J Magn Reson, 2002, 155(2): 217–225.CrossRefGoogle Scholar
  18. [18]
    William H O, Cynthia K L. Improved Spin-echo-edited NMR diffusion measurements[J]. J Magn Reson, 2001, 153(2): 273–276.CrossRefGoogle Scholar
  19. [19]
    Gianluigi V, Maurizio D, Maria R G, et al. 1H NMR studies on the interaction of β-carboline derivatives with human serum albumin [J]. J Magn Reson, 1998, 130(2): 281–286.CrossRefGoogle Scholar
  20. [20]
    Zhang C F, Cao J Q, Yin D Z, et al. Preparation and radiolabeling of human serum albumin (HSA)-coated magnetite nanoparticles for magnetically targeted therapy[J]. Applied Radiation and Isotopes, 2004, 61(6): 1255–1259.CrossRefGoogle Scholar
  21. [21]
    Roser M, Fischer D, Kissel T. Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats[J]. European Journal of Pharmaceutics and Biopharmaceutics, 1998, 46(3): 255–263.CrossRefGoogle Scholar
  22. [22]
    Masafumi H, Kiyotaka A, Naoki T. Catalytic activity and structural analysis of polymer-protected Au/Pd bimetallic clusters prepared by the successive reduction of HAuCl4 and PdCl2[J]. J Phys Chem, 1993, 97(19): 5103–5114.CrossRefGoogle Scholar
  23. [23]
    Lazarides A A, Schatz G C. DNA-linked metal nanosphere materials: structural basis for the optical properties[J]. J Phys Chem B, 2000, 104(3): 460–467.CrossRefGoogle Scholar

Copyright information

© Central South University 2006

Authors and Affiliations

  • He Han-wei 
    • 1
    Email author
  • Liu Hong-jiang 
    • 1
  • Zhou Ke-chao 
    • 1
  • Wang Wei 
    • 2
  • Rong Peng-fei 
    • 2
  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina
  2. 2.The Third Xiangya HospitalCentral South UniversityChangshaChina

Personalised recommendations