Laboratory study of property-modified prebaked carbon anode and application in large aluminum electrolysis cells

  • Xiao Jin Email author
  • Li Jie 
  • Ye Shao-long 
  • Lai Yan-qing 
  • Liu Ye-xiang 
Mineral Processing, Metallurgy And Chemistry


A kind of complex additive mainly containing Al, Mg, F, and O was prepared. The synthetical performances of the property-modified prebaked anodes containing additives were tested in laboratory. On the basis of ideal testing results obtained, a large number of industrial prebaked property-modified anodes are prepared in a large-scale aluminum company. Further more, they are all used in 160 kA prebaked anode aluminum electrolysis cells. The statistic result show that, compared with common anodes, the property-modified ones enhance current efficiency by 0.78%, reduce energy consumption by 106.1 kW·h per ton aluminum and reduce carbon consumption by 11.6 kg per ton aluminum averagely.

Key words

aluminum electrolysis property-modified anodes laboratory study industrial application 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    YIN En-sheng, LIU Yong-gang, XI Can-min, et al. Developing the GP-320 cell technology in China[A]. New O. Light Metals [C]. Warrendale Pa: TMS, 2001. 213–218.Google Scholar
  2. [2]
    Vanvoren C, Homsi P, Basquin J L, et al. AP 50: The pechiney 500 kA cell[A]. New O. Light Metals [C]. Warrendale Pa: TMS, 2001. 221–226.Google Scholar
  3. [3]
    Hardin E E, Ellis P J, Beilharz C L, et al. A comprehensive review of the effects of calcination at various temperatures on coke structure and properties-Part II [A]. Mannweilev U. Light Metals[C]. Warrendale Pa: TMS, 1994. 571–581.Google Scholar
  4. [4]
    Coste B, Schneider J P. Influence of coke real density on anode reactivity consequence on anode baking[A]. Light Metals[C]. Warrendale Pa: TMS, 1994. 583–591.Google Scholar
  5. [5]
    Olsen E, Thonstad J. The behavior of mickel ferrite cermet materials as inert anodes[A]. Hale W. Light Metals[C]. Warrendale, Pa: TMS, 1996. 369–376.Google Scholar
  6. [6]
    LIU Ye-xiang, LIU Xi-hang, WANG Hua-zhang, et al. Anode Paste and Directions of Producing[P]. Chinese Patent, 88104290.Google Scholar
  7. [7]
    Feng N X, Zhang M J, Kai G, et al. Influence of lithium carbonate addition to carbon anodes in a laboratory aluminium electrolysis cell[J]. Carbon, 1991, 29(1): 39–41.CrossRefGoogle Scholar
  8. [8]
    Yang J H, Liu Y X, Thonstad J, et al. On electrocatalysis of doped carbon anodes in aluminium electrolysis, Part I [J]. Aluminium, 1998(6): 720–725.Google Scholar
  9. [9]
    Yang J H, Liu Y X, Thonstad J, et al. On electrocatalysis of doped carbon anodes in aluminium electrolysis, Part II [J]. Aluminium, 1998(7): 537–541.Google Scholar
  10. [10]
    YANG Jiang-hong, LIU Ye-xiang. Factors affecting anodic overpotential of carbon anodes in cryoltic-alumina melts[J]. Aluminum Transactions, 1999, 1(1): 537–541.Google Scholar
  11. [11]
    XIAO Jin, YANG Jian-hong, LIU Ye-xiang, et al. Preperation of dopping carbon anode with mechanical method[J]. Journal of Central South University of Technology, 1998, 29(4): 341–343. (in Chinese)Google Scholar
  12. [12]
    HUANG Hua. The contrast and study of detecting method to CO2 reaction rate[J]. Light Metals, 1999 (3): 46–50. (in Chinese)Google Scholar

Copyright information

© Central South University 2005

Authors and Affiliations

  • Xiao Jin 
    • 1
    Email author
  • Li Jie 
    • 1
  • Ye Shao-long 
    • 1
  • Lai Yan-qing 
    • 1
  • Liu Ye-xiang 
    • 1
  1. 1.School of Metallurgical Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations