Advertisement

Synthesis and characterization of high-voltage cathode material LiNi0.5Mn1.5O4 by one-step solid-state reaction

  • Wang Zhi-xing Email author
  • Fang Hai-sheng 
  • Yin Zhou-lan 
  • Li Xin-hai 
  • Guo Hua-jun 
  • Peng Wen-jie 
Materials Science and Engineering

Abstract

LiNi0.5Mn1.5O4 was prepared under various conditions by one-step solid-state reaction in air and its properties were investigated by X-ray diffractormetry (XRD), scanning electron microscopy (SEM) and electrochemical measurement. XRD patterns show that LiNi0.5Mn1.5O4 synthesized under various conditions has cubic spinel structure. SEM images exhibit that the particle size increases with increasing calcination temperature and time. Electrochemical test shows that the LiNi0.5Mn1.5O4 calcined at 700 °C for 24 h delivers up to 143 mA · h/g, and the capacity retains 132 mA · h/g after 30 cycles.

Key words

lithium ion batteries cathode material LiNi0.5Mn1.5O4 solid-state reaction 

CLC number

TM912 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Sigala C D, Guyomard A, Verbaere Y, et al. Positive electrode materials with high operating voltage for lithium batteries: LiCryMn2−yO4 (0≤y≤1)[J]. Solid State Ionics, 1995, 81(3/4): 167–170.CrossRefGoogle Scholar
  2. [2]
    Kawai H, Nagata M, Tukamoto H, et al. High-voltage lithium cathode materials[J]. J Power Sources, 1999, 81: 67–72.CrossRefGoogle Scholar
  3. [3]
    Ohzuku T, Takeda S, Iwanaga M. Solid-state redox potentials for Li[Me1/2 Mn3/2]O4 (Me: 3d-transition metal) having spinel-framework structures: a series of 5 volt materials for advanced lithium-ion batteries[J]. J Power Sources, 1999, 81–82: 90–94.CrossRefGoogle Scholar
  4. [4]
    Zhong Q, Bonakdarpour A, Zhang M, et al. Synthesis and electrochemistry of LiNixMn2−xO4[J]. J Electrochem Soc, 1997, 144(1): 205–213.CrossRefGoogle Scholar
  5. [5]
    Ein-Eli Y, Howard W F. LiCuxII CuyIII MnIII, IV [2−(x+y)]-O4: 5 V cathode materials[J]. J Electrochem Soc, 1997, 144(8): L205-L207.CrossRefGoogle Scholar
  6. [6]
    Wu X, Kim S B. Improvement of electrochemical properties of LiNi0.5 Mn1.5 O4 spinel [J]. J Power Sources, 2002, 109(1): 53–57.CrossRefGoogle Scholar
  7. [7]
    Idemoto Y, Narai H, Koura N. Crystal structure and cathode performance dependence on oxygen content of LiMn1.5 Ni0.5 O4 as a cathode material for secondary lithium batteries[J]. J Power Sources, 2003, 119–121: 125–129.CrossRefGoogle Scholar
  8. [8]
    Ohzuku T, Ariyoshi K, Yamamoto S. Synthesis and characterization of Li[Ni1/2Mn3/2]O4 by two-step solid state reaction[J]. J Ceram Soc, Jpn. 2002, 110(5): 501–505.CrossRefGoogle Scholar
  9. [9]
    Alcantara R, Jaraba M, Lavela P, et al. Optimizing preparation conditions for 5 V electrode performance, and structural changes in Li1−x Ni0.5 Mn1.5 O4 spinel[J]. Electrochim Acta, 2002, 47(11): 1829–1835.CrossRefGoogle Scholar
  10. [10]
    Myung S T, Komaba S, Kumagai N, et al. Nanocrystalline LiNi0.5 Mn1.5 O4 synthesized by emulsion drying method[J]. Electrochim Acta, 2002, 47(15): 2543–2549.CrossRefGoogle Scholar
  11. [11]
    Lee Y S, Sun Y K, Ota S, et al. Preparation and characterization of nano-crystalline LiNi0.5 Mn1.5 O4 for 5 V cathode material by composite carbonate process[J]. Electrochem Commun, 2002, 4(12): 989–994.CrossRefGoogle Scholar
  12. [12]
    Kim J H, Myung S T, Sun Y K. Molten salt synthesis of LiNi0.5 Mn1.5 O4 spinel for 5 V class cathode material of Li-ion secondary battery[J]. Electrochim Acta, 2004, 49(2): 219–227.CrossRefGoogle Scholar
  13. [13]
    Lazarraga M G, Pascual L, Gadjov H, et al. Nanosize LiNiy Mn2−y O4 (0<y<0.5) spinels synthesized by a sucrose-aided combustion method. characterization and electrochemical performance[J]. J Mater Chem, 2004, 14(10): 1640–1647.CrossRefGoogle Scholar
  14. [14]
    Park S H, Oh S W, Myung S T, et al. Effects of synthesis condition on LiNi1/2Mn3/2O4 cathode material for prepared by ultrasonic spray pyrolysis method[J]. Solid State Ionics, 2005, 176(5/6): 481–486.CrossRefGoogle Scholar
  15. [15]
    Roisnel T, Rodriguez-Carjaval J. Fullprof Manual[M]. Grnoble: Institut Laue-Langevin, 2000.Google Scholar
  16. [16]
    Takahashi K, Saitoh M, Sano M, et al. Electrochemical and structural properties of a 4.7 V-class LiNi0.5 Mn1.5 O4 positive electrode material prepared with a self-reaction method[J]. J Electrochem Soc, 2004, 151(1): A173-A177.CrossRefGoogle Scholar
  17. [17]
    Kim J H, Myung S T, Yoon C S, et al. Comparative study of LiNi0.5 Mn1.5 O4−δ and LiNi0.5 Mn1.5 O4 cathodes having two crystallographic structures: Fd3m and P4332[J]. Chem Mater, 2004, 16(5): 906–914.CrossRefGoogle Scholar

Copyright information

© Central South University 2005

Authors and Affiliations

  • Wang Zhi-xing 
    • 1
    Email author
  • Fang Hai-sheng 
    • 1
  • Yin Zhou-lan 
    • 1
  • Li Xin-hai 
    • 1
  • Guo Hua-jun 
    • 1
  • Peng Wen-jie 
    • 1
  1. 1.School of Metallurgical Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations