Preparation of ultrafine Ti(C, N)-based cermet using oxygen-rich powders

  • Feng Ping Email author
  • He Yue-hui 
  • Xiong Wei-hao 
  • Xiao Yi-feng 
Materials Science and Engineering


The availability using oxygen-rich powders to prepare ultrafine Ti(C,N)-based cermets was investigated. The deoxidation process, denitrification phenomenon and the effect of deoxidation on microstructure and mechanical properties of sintered samples were discussed, respectively. The results show that oxygen in the samples prepared even with high oxygen contained in starting powders can be almost completely cleaned away through suitable sintering process. The ultrafine oxygen-rich powders have a significant effect on microstructure, which promotes the formation of white core phase. A ultrafine Ti(C,N)-based cermet with mean particle size of 0.30 µm, uniform microstructure and excellent mechanical properties is successfully prepared. It is also found that there exists severe denitrification phenomenon in the preparation process of ultrafine Ti(C,N)-based cermet.

Key words

Ti(C,N)-based cermet ultrafine structured grain solid-state sintering deoxidation microstructure mechanical property 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Ehira M, Egami A. Mchanaicl properties and mictro-structures of submicron cermets [J]. Int J of Refractory Metals and Hard Materials, 1995, 13(5): 313–319.CrossRefGoogle Scholar
  2. [2]
    Jeon E T, Joardar J, Kang S. Microstructure and tribo-mechanical properties of ultrafine Ti(CN) cermets [J]. Int J Refractory Metals and Hard Materials, 2002, 20(3): 207–211.CrossRefGoogle Scholar
  3. [3]
    Xiong J, Zheng Y K, Shen B L, et al. The preparation and performance of superfine TiCN cermet [J]. Powder Metallurgy Technology, 2003, 21(2): 92–95. (in Chinese)Google Scholar
  4. [4]
    Guo J K, Feng C D. The recent progress on nanoceramics [J]. Chinese Journal of Materials Research, 1995, 95(5): 412–419. (in Chinese)Google Scholar
  5. [5]
    Gille G, Szesny B, Dreyer K, et al. Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts [J]. Int J Refractory Metals and Hard Materials, 2002, 20(1): 3–22.CrossRefGoogle Scholar
  6. [6]
    Ettmayer P, Kolaska H, Lengauer W, et al. Ti(C, N)-metallurgy and properties [J]. Int J Refractory Metals and Hard Materials, 1995, 13(6): 343–351.CrossRefGoogle Scholar
  7. [7]
    Chen L, Lengauer W, Ettmayer P, et al. Fundamentals of liquid sintering for modern cermets and functionally graded cemented carbonitrides (FGCC) [J]. Int J Refractory Metals and Hard Materials, 2000, 18(2): 307–322.CrossRefGoogle Scholar
  8. [8]
    Yoshimura H, Sugizawa T, Nishigaki K, et al. Reaction occurring during sintering and the characteristics of TiC-20TiN-15WC-10TaC-9Mo-5, 5Ni-11Co cermet [J]. Int J Refractory Metals and Hard Materials, 1983, 2(4): 170–174.Google Scholar
  9. [9]
    Ettmayer P, Kolaska H, Dreyer K. Effect of sintering atmosphere on the properties of cermets [J]. Powder Metall Int, 1991, 23(4): 224–229.Google Scholar
  10. [10]
    Dong-Il C, Doh-Yeon K. Microstructural evolution during the sintering of TiC-Mo-Ni cermets[J]. J Am Ceram Soc, 1993, 76(8): 2049–2052.CrossRefGoogle Scholar
  11. [11]
    Moskowitz D, Terner L L. Cemented titanium carbonitrides: effects of temperature and carbon-tonitrogen ratio[J]. Mater Sci Eng A, 1988, A105–106: 256–260.Google Scholar
  12. [12]
    Qian M. On the disappearance of Mo2C during low-temperature sintering of Ti(C, N)-Mo2C-Ni cermets [J]. Journal of Materials Science, 1999, 34(1): 3677–3684.CrossRefGoogle Scholar
  13. [13]
    Zhang S Y. Titanium carbide-based cermets process and properties[J]. Materials Science and Engineering, 1993, A163(1): 141–148.CrossRefGoogle Scholar
  14. [14]
    Paster H. Present status and development of tool materials (part 1): Cutting tools[J]. Int J Refractory Metals and Hard Materials, 1987, 6(4): 196–209.Google Scholar
  15. [15]
    Lindahl P, Gustafson P, Rolander U, et al. Microstructure of model cermets with high Mo or W content[J]. Int J Refractory Metals and Hard Materials, 1999, 17(6): 411–421.CrossRefGoogle Scholar
  16. [16]
    Tracey V A. Nickel in hardmetals[J]. Int J Refractory Metals and Hard Materials, 1992, 11(3): 137–149.CrossRefGoogle Scholar
  17. [17]
    Ahn S Y, Kang S h. Formation of core/rim structures in Ti(C, N)-WC-Ni cermets via a dissolution and reprecipition process [J]. J Am Ceram Soc, 2000, 83(6): 1489–94.CrossRefGoogle Scholar
  18. [18]
    Feng P, Xiong W H, Yu L X, et al. Phase evolution and microstructure characteristics of ultrafine Ti(C, N)-based cermet by spark plasma sintering[J]. Int J Refractory Metals and Hard Materials, 2004, 22(2–3): 133–138.CrossRefGoogle Scholar
  19. [19]
    Paster H. Titanium-carbonitride-based hardalloys for cutting tools[J]. Mater Sci Eng A, 1988, A105–106(4): 401–409.CrossRefGoogle Scholar
  20. [20]
    Zackrisson J, Rolander U, Anderén H O. Development of microstructure during sintering[J]. Metallurgical and Materials Transactions A, 2001, 32A: 85–94.CrossRefGoogle Scholar

Copyright information

© Central South University 2005

Authors and Affiliations

  • Feng Ping 
    • 1
    • 2
    Email author
  • He Yue-hui 
    • 1
  • Xiong Wei-hao 
    • 2
  • Xiao Yi-feng 
    • 1
  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina
  2. 2.State Key Laboratory of Die & Mould TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations