Journal of Central South University of Technology

, Volume 11, Issue 4, pp 385–390 | Cite as

Oxygen adsorption on pyrite (100) surface by density functional theory

  • Sun Wei 
  • Hu Yue-hua Email author
  • Qiu Guan-zhou 
  • Qin Wen-qing 


Pyrite (FeS2) bulk and (100) surface properties and the oxygen adsorption on the surface were studied by using density functional theory methods. The results show that in the formation of FeS2(100) surface, there exists a process of electron transfer from Fe dangling bond to S dangling bond. In this situation, surface Fe and S atoms have more ionic properties. Both Fe2+ and S2− have high electrochemistry reduction activity, which is the base for oxygen adsorption. From the viewpoint of adsorption energy, the parallel form oxygen adsorption is in preference. The result also shows that the state of oxygen absorbed on FeS2 surface acts as peroxides rather than O2.

Key words

density functional theory FeS2(100) surface surface relaxation oxygen adsorption sulfide flotation 

CLC number

TD952 O641.12+


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Raichur A M, Wang X H, Parekh B K. Quantifying pyrite surface oxidation kinetics by contact angle measurements [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 167(3): 245–251.CrossRefGoogle Scholar
  2. [2]
    Baltrus J P, Diehl J R. Surface spectroscopic studies of factors influencing xanthate adsorption on coal pyrite surfaces[J]. Fuel and Energy Abstracts, 1997, 38(4): 212.Google Scholar
  3. [3]
    Boon M, Heijnen J J. Solid-liquid mass transfer limitation of ferrous iron in the chemical oxidation of FeS2 at high redox potential[J]. Hydrometallurgy, 2001, 62(1): 57–66.CrossRefGoogle Scholar
  4. [4]
    Laajalehto K, Leppinen J, Kartio I, et al. XPS and FTIR study of the influence of electrode potential on activation of pyrite by copper or lead [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 154(1 – 2): 193–199.CrossRefGoogle Scholar
  5. [5]
    Altermatt P P, Kiesewetter T. Specifying targets of future research in photovoltaic devices containing pyrite (FeS2) by numerical modeling[J]. Solar Energy Materials and Solar Cells, 2002, 71(2): 181–195.CrossRefGoogle Scholar
  6. [6]
    Nakamura S, Yamamoto A. Electrodeposition of pyrite (FeS2) thin films for photovoltaic cells[J]. Solar Energy Materials and Solar Cells, 2001, 65(1 – 4): 79–85.CrossRefGoogle Scholar
  7. [7]
    Boon M, Heijnen J J. Chemical oxidation kinetics of pyrite in bioleaching processes[J]. Hydrometallurgy, 1998, 48(1): 27–41.CrossRefGoogle Scholar
  8. [8]
    TAO D P. The incipient oxidation of pyrite[J]. Fuel and Energy Abstracts, 1995, 36(4): 302.Google Scholar
  9. [9]
    Kelsall G H, Yin Q, Vaughan D J, et al. Electrochemical oxidation of pyrite (FeS2) in aqueous electrolytes [J]. Journal of Electroanalytical Chemistry, 1999, 471(2): 116–125.CrossRefGoogle Scholar
  10. [10]
    Nagy A J, Mestl G. The role of subsurface oxygen in the silver-catalyzed, oxidative coupling of methane [J]. Journal of Catalysis, 1999, 188(1): 58–68.CrossRefGoogle Scholar
  11. [11]
    SONG Chun-shan. Fuel processing for low-temperature and high-temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century[J]. Catalysis Today, 2002, 77(1 – 2): 17–49.CrossRefGoogle Scholar
  12. [12]
    Pattabi M, Castellanos R H, Castillo R, et al. Electrochemical characterization of tungsten carbonyl compound for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2001, 26(2): 171–174.CrossRefGoogle Scholar
  13. [13]
    King F, Quinn M J, Litke C D. Oxygen reduction on copper in neutral NaCl solution[J]. Journal of Electroanalytical Chemistry, 1995, 385(1): 45–55.CrossRefGoogle Scholar
  14. [14]
    Ahlberg E, Broo A E. Oxygen reduction at sulphide minerals. 1. A rotating ring disc electrode (RRDE) study at galena and pyrite[J]. International Journal of Mineral Processing, 1996, 46(1 – 2): 73–89.CrossRefGoogle Scholar
  15. [15]
    Ahlberg E, Broo A E. Oxygen reduction at sulphide minerals. 2. A rotating ring disc electrode (RRDE) study at galena and pyrite in the presence of xanthate [J]. International Journal of Mineral Processing, 1996, 47(1 – 2): 33–47.CrossRefGoogle Scholar
  16. [16]
    Ahlberg E, Broo A E. Oxygen reduction at sulphide minerals. 3. The effect of surface pre-treatment on the oxygen reduction at pyrite[J]. International Journal of Mineral Processing, 1996, 47(1 – 2): 49–60.CrossRefGoogle Scholar
  17. [17]
    Fierro R E C, Tryk D. Perovskite-type oxides: oxygen electrocatalysis and bulk structure[J]. Journal of Power Sources, 1988, 22 (3 – 4): 387–98.Google Scholar
  18. [18]
    Gupta S, Tryk D, Bae I, et al. Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction [J]. Journal of Appl Electrochem, 1989, 19(1): 19–27.CrossRefGoogle Scholar
  19. [19]
    CHUN Liang-chang, LEE Tai-cheng, HUANG Ta-Jen. Oxygen reduction mechanism and performance of Y1Ba2Cu3O7-d as a cathode material in a high temperature solid-oxide fuel cell [J]. Journal of Solid State Electrochemistry, 1998, 2(5): 291–298.CrossRefGoogle Scholar
  20. [20]
    Hung A, Muscat J. Density-functional theory studies of pyrite FeS2(100) and (110) surfaces[J]. Surface Science, 2002, 513(3): 511–524.CrossRefGoogle Scholar
  21. [21]
    Hung A, Muscat J. Density-functional theory studies of pyrite FeS2(111) and (210) surfaces[J]. Surface Science, 2002, 520(1 – 2): 111–119.CrossRefGoogle Scholar
  22. [22]
    Opahle I, Koepernik K, Eschrig H. Full potential band structure calculation of iron pyrite[J]. Computational Materials Science, 2000, 17(2 – 4): 206–210.CrossRefGoogle Scholar
  23. [23]
    Edelbro R, Sandström A, Paul J. Full potential calculations on the electron band structures of sphalerite [J]. Pyrite and Chalcopyrite Applied Surface Science, 2003, 206(1 – 4): 300–313.CrossRefGoogle Scholar
  24. [24]
    Muscat J, Hung A, Russo S, et al. First-principles studies of the structural and electronic properties of pyrite FeS2[J]. Phys Rev, 2002, 65(1): 54.Google Scholar
  25. [25]
    Lavinsky R. General pyrite information [EB/OL]. Scholar
  26. [26]
    Segall M D, Lindan P L D, Probert M J, et al. First-principles simulation: ideas illustrations and the CASTEP code[J]. Phys Cond Matt, 2002, 14(2): 2717–2743.CrossRefGoogle Scholar
  27. [27]
    Nesbitt H W, Bancroft G M, Scaini M J, et al. Sulfur and iron surface states on fractured pyrite surfaces [J]. American Mineralogist, 1998, 83: 1067–1076.CrossRefGoogle Scholar
  28. [28]
    ZHANG D H. Adsorption and photodesorption of oxygen on the surface and crystallite interfaces of sputtered ZnO films [J]. Materials Chemistry and Physics, 1996, 45(3): 248–252.MathSciNetCrossRefGoogle Scholar
  29. [29]
    Bechtold E, Schennach R. Adsorption of oxygen on chlorine-modified Pt(100) surfaces[J]. Surface Science, 1996, 369(1 – 3): 277–288.Google Scholar
  30. [30]
    Sasaki T, Goto Y. Oxygen adsorption states on Mo (112) surface studied by Hreels[J]. Surface Science, 2002, 502 – 503: 136–143.CrossRefGoogle Scholar

Copyright information

© Central South University 2004

Authors and Affiliations

  • Sun Wei 
    • 1
  • Hu Yue-hua 
    • 1
    Email author
  • Qiu Guan-zhou 
    • 1
  • Qin Wen-qing 
    • 1
  1. 1.School of Resources Processing and BioengineeringCentral South UniversityChangshaChina

Personalised recommendations