Advertisement

Effects of sintering atmosphere on the microstructure and mechanical property of sintered 316L stainless steel

  • Li Song-lin 
  • Huang Bai-yun 
  • Li Yi-min 
  • Liang Shu-quan 
  • Li Du-xin 
  • Fan Jin-lian 
  • Jiang Feng 
Article

Abstract

In the present work, N2, N2 + H2, Ar and Ar + H2, were used as the sintering atmosphere of Metal Injection Molded 316L stainless steel respectively. The influences of the sintering atmospheres on C, O, N contents of the sintered specimens, sintered density, grain morphology and mechanical properties were investigated. The results show that C, O, N contents of the sintered specimens can be controlled in permitted low values. The ultimate tensile strength and elongation of the specimen sintered in N2 + H2 atmosphere are 765 MPa and 32% respectively. Using Ar and Ar + H2 as the sintering atmosphere, the density of the sintered specimens is 98% of the theoretical density; the pores are uniformly distributed as small spherical shape and the grain size is about 50 µm. The mechanical properties of the specimen, i. e. ultimate tensile strength 630 MPa, yield strength 280 MPa, elongation 52%, HRB 71, are much better than those of the American Metal Powder Industries Federation (MPIF) 35 Standard after being sintered in Ar + H2.

Key words

powder metallurgy 316L stainless steel sintering microstructure mechanical property 

Document code

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bolton J D, Youseffi M, Becker B S. Silicid phase formation and its influence on liquid phase sintering in 316L stainless steel with elemental silicon additions [J]. Powder Metallurgy, 1998, 41 (2): 93–102.CrossRefGoogle Scholar
  2. [2]
    Preusse H, Bolton J D. Use of phosphide phase additions to promote liquid phase sintering in 316L stainless steel [J]. Powder Metallurgy, 1999, 42 (1): 51–62.CrossRefGoogle Scholar
  3. [3]
    Tandon R, German R M. Sintering and mechanical properties of a boron-doped austentic stainless steel [J]. The International Journal of Powder Metallurgy, 1998, 34 (1): 40–50.Google Scholar
  4. [4]
    Bloemacher M, Weinand D. Injection molding of stainless steel powders with a new binder technique[A]. Booker P, Gaspervich J, German R M, eds. Powder Injection Molding Symposium-1992 [C]. Princeton: MPIF, 1992: 99–117.Google Scholar
  5. [5]
    Tiziani A, Molinari A, Kazior J, et al. Effect of vacuum sintering on the mechanical properties of copper-alloyed stainless steel [J]. Powder Metallurgy International, 1990, 22(4): 17–19.Google Scholar
  6. [6]
    Reinshagen J H, Flick G D. Improved corrosion resistants stainless steel based P/M alloys [A]. Cadle T M, Narasimhan K S, eds. Advances in Powder Metallurgy and Particulate Materials-1996[C]. Princeton: MPIF, 1996, 61–72.Google Scholar
  7. [7]
    Duncavage D P, Finn C W P. Debinding and sintering of metal injection molded 316L stainless steel[A]. Lawley A, Swanson A, eds. Advances in Powder Metallurgy and Particulate Materials[C]. Princeton: MPIF, 1993: 91–103.Google Scholar
  8. [8]
    Loh N H, Khor K A, Tor S B. Sintering characteristics of metal injection moulded stainless steel 316L [A]. Cadle T M, Narasimhan K S, eds. Advance in Powder Metallurgy and Particulate Materials-1996 [C]. Priceton: MPIF, 1996, 29–37.Google Scholar
  9. [9]
    Lai H Y, Wu Y K, Lin C X, et al. Influence of dew point on surface reaction of austentic stainless steel powder during sintering [A]. Capus J M, German R M, eds. Advance in Powder Metallurgy and Particulate Materials-1992 [C]. Princeton: MPIF, 1992. 363–369.Google Scholar
  10. [10]
    Rosso M, Porto G, Wood J V. Properties of high density sintered 316L stainless steel [A]. Caddle T M, Narasimhan K S, eds. Advances in Powder Metallurgy and Particulate Materials-1996[C]. Princeton: MPIF, 87–97.Google Scholar
  11. [11]
    Lindstedt U, Karlsson B. Microstructure and mechanical behavior of single pressed and vacuum sintered gas and water atomized 316L stainless steel powder [J]. Powder Metallurgy, 1998, 41 (4): 261–268.CrossRefGoogle Scholar
  12. [12]
    Anwar M Y, Messer P F, Ellis B, et al. Injection moulding of 316L stainless steel powder using novel binder system [J]. Powder Metallurgy, 1995, 38 (2): 113–119.CrossRefGoogle Scholar
  13. [13]
    Nylund A, Tunberg T, Bertilsson H, et al. Injection molding of gas and water-atomized stainless steel powder [J]. The International Journal of Powder Metallurgy, 1995, 31 (4): 365–373.Google Scholar
  14. [14]
    Rawers J, Croydon F, Krablbe R, et al. Tensile characteristics of nitrogen enhanced powder injection moulded 316L stainless steel [J]. Powder Metallurgy, 1996, 39(2): 125–129.CrossRefGoogle Scholar
  15. [15]
    Li S L, Huang B Y, Li Y M. Development of a waxoil-polyethylene binder for Fe-2Ni powder injection molding [J]. Trans Nonferrous Met Soc China, 2000,10(4): 473–475.Google Scholar

Copyright information

© Central South University 2003

Authors and Affiliations

  • Li Song-lin 
    • 1
  • Huang Bai-yun 
    • 1
  • Li Yi-min 
    • 1
  • Liang Shu-quan 
    • 1
  • Li Du-xin 
    • 1
  • Fan Jin-lian 
    • 1
  • Jiang Feng 
    • 1
  1. 1.State Key Laboratory for Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations