Advertisement

Flow stress behavior of Cu13Zn alloy deformed at elevated temperature

  • Li Luo-xing 
  • Peng Da-shu 
  • Luo Feng-hua 
  • Zhou Mei-ling 
Materials, Mining And Chemical Engineering And Geology
  • 23 Downloads

Abstract

The flow stress behavior of Cu13Zn alloy was investigated by compression tests carried out at 650 °C, 700 °C, 750 °C, 850 °C, and constant strain rates of 0.05 s−1, 0.1 s−1, 0.5 s−1, 1 s−1, 5 s−1, respectively. The results show that the flow stress increases with the increase of strain and reaches a steady-state stress, and the saturated stress (σs) increases with the increase of the strain rate and the decrease of temperature. Flow stress curves of the alloy deformed at elevated temperatures can be simulated effectively by the model proposed by Zhou and Clode, and the flow stress is described as a function of strain, strain rate and temperature. Material constants values are: Q=270.43 kJ/mol, α=0.020 94, A=1.747×1011 s−1 and n=3.549 mm2·N−1, the deformation mechanisms of the alloy are self-diffusion and dynamic recovery.

Key words

flow stress deformation mechanism copper zinc alloy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Verlinden B, Shadi A, Delaey L. A generalized constitutive equation for an AA6060 aluminum alloy[J]. Scripta Materialia, 1993, 28(11): 1441–1146.CrossRefGoogle Scholar
  2. [2]
    Braga H C, Barbosa R, Jurgen Breme. Hot strength of Ti and Ti6A14V deformed in axial compression[J]. Scripta Materialia, 1993, 28(8): 979–983.CrossRefGoogle Scholar
  3. [3]
    ZHOU M, Clode M P. A constitutive model and its identification for deformation characterized by dynamic recovery[J]. ASME Journal of Engineering Materials and Technology, 1997, 119(1): 138–142.CrossRefGoogle Scholar
  4. [4]
    Gronostajski Z J. Model describing the characteristic values of flow stress and strain of brass M63 and aluminum bronze BA93[J]. J Mater Process Technol, 1998, 78(1): 84–89.CrossRefGoogle Scholar
  5. [5]
    Sheppard T, Norley J. Deformation characteristics of Ti6Al4V[J]. Mater Sci Technol, 1988, 4(10): 903–908.CrossRefGoogle Scholar
  6. [6]
    Rao K P, Hawbolt E B. Development of constitutive relationships using compression testing of a medium carbon steel[J]. ASME Journal of Engineering Materials and Technology, 1992, 114(1), 116–123.CrossRefGoogle Scholar
  7. [7]
    Sellars M, Tegart McG W J. La relation entre la résistance et la structure dans la déformation à chaud[J]. J Mem Sci De Metall, 1966, 63(9): 731–746.Google Scholar

Copyright information

© Central South University 2000

Authors and Affiliations

  • Li Luo-xing 
    • 1
  • Peng Da-shu 
    • 1
  • Luo Feng-hua 
    • 2
  • Zhou Mei-ling 
    • 2
  1. 1.Department of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Department of Materials Science and EngineeringBeijing Polytechnic UniversityBeijingChina

Personalised recommendations