Applied Geophysics

, Volume 13, Issue 1, pp 37–47 | Cite as

2.5D forward modeling and inversion of frequency-domain airborne electromagnetic data

  • Wen-Ben Li
  • Zhao-Fa Zeng
  • Jing Li
  • Xiong Chen
  • Kun Wang
  • Zhao Xia


Frequency-domain airborne electromagnetics is a proven geophysical exploration method. Presently, the interpretation is mainly based on resistivity—depth imaging and one-dimensional layered inversion; nevertheless, it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods. 3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data. Thus, we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm. To eliminate the source singularities in the numerical simulations, we split the fields into primary and secondary fields. The primary fields are calculated using homogeneous or layered models with analytical solutions, and the secondary (scattered) fields are solved by the finite-element method. The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver, which greatly improves the computational efficiency. The inversion algorithm was based on damping least-squares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix. Synthetic and field data were used to test the effectiveness of the proposed method.


Frequency-domain airborne electromagnetic finite element method 2.5D geoelectric model damped least-squares method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auken, E., Chistiansen, A. V., Jacobsen, B. H., et al., 2005, Piece-wise 1D laterally constrained inversion of resistivity data: Geophysical Prospecting, 53, 497–506.CrossRefGoogle Scholar
  2. Brodie, R., and Sambridge, M., 2006, A holistic approach to inversion of frequency-domain airborne EM data: Geophysics, 71(6), G301–G312.CrossRefGoogle Scholar
  3. Brodie, R., and Sambridge, M., 2009, Holistic inversion of frequency-domain airborne electromagnetic data with minimal prior information: Exploration Geophysics, 40, 8–16.CrossRefGoogle Scholar
  4. Cai, J., Qi, Y. F., Yin, C. C., et al., 2014, Weighted Laterally-constrained inversion of frequency-domain airborne EM data: Chinese Journal of Geophysics, 57(1), 953–960.Google Scholar
  5. Chen, J., and Raiche, A., 1998, Inverting AEM data using a damped eigenparameter method: Exploration Geophysics, 29, 128–132.CrossRefGoogle Scholar
  6. Cox, L. H., Wilson, G. A., and Zhdanov, M. S., 2010, 3D inversion of airborne electromagnetic data using a moving footprint: Exploration Geophysics, 41, 250–259.CrossRefGoogle Scholar
  7. Ellis, R. G., 1988, Inversion of airborne electromagnetic data: Exploration Geophysics, 29, 121–127.CrossRefGoogle Scholar
  8. Farquharson, C. G., Oldenburg, D. W., and Routh, P. S., 2003, Simultaneous 1-D inversion susceptibility and electrical conductivity: Geophysics, 68(6), 1857–1869.CrossRefGoogle Scholar
  9. Huang, H. P., and Fraser, D. C., 1996, The differential parameter method for multifrequency airborne resistivity mapping: Geophysics, 61(1), 100–109.CrossRefGoogle Scholar
  10. Huang, H. P., and Fraser, D. C., 2002, Dielectric permittivity and resistivity mapping using high frequency helicopter-borne EM data: Geophysics, 67(3), 727–738.CrossRefGoogle Scholar
  11. Huang, H. P., and Fraser, D. C., 2003, Inversion of helicopter electromagnetic data to a magnetic conductive layered earth: Geophysics, 68(4), 1211–1223.CrossRefGoogle Scholar
  12. Hu, X. Y., Peng R. H., Wu, G. J., et al., 2013, Mineral Exploration using CSAMT data: Application to Longmen region metallogenic belt, Guangdong Province, China: Geophysics, 78(3), B111–B119.CrossRefGoogle Scholar
  13. Leppin, M., 1992, Electromagnetic modeling of 3-D source over 2D inhomogeneities in the time domain: Geophysics, 57(8), 994–1003.CrossRefGoogle Scholar
  14. Li, X. K., 2011, A MPI Based Parallel Calculation Investigation on Two Dimensional Finite Element Modelling of AEM: PhD Thesis, China University of Geosciences, Beijing.Google Scholar
  15. Li, W. J., 2008, Data Processing of Frequency Domain Airborne Electromagnetic Survey: PhD Thesis, China University of Geosciences, Beijing.Google Scholar
  16. Liu, G. M., and Becker, A., 1992, Evaluation of terrain effects in AEM survey suing the boundary element method: Geophysics, 57(2), 272–278.CrossRefGoogle Scholar
  17. Liu, Y. H., and Yin, C. C., 2013, 3D inversion for frequency-domain HEM data: Chinese Journal of Geophysics, 56(12), 4278–4287.Google Scholar
  18. Lugão, P. P., and Wannamaker, P. E., 1996, Calculating the two-dimensional magnetotelluric Jacobian in finite elements using reciprocity: Geophys. J. Int., 127, 806–810.CrossRefGoogle Scholar
  19. McGillivaray, P. R., Oldenburg, D. W., Ellis R. G., et al., 1994, Calculation of sensitivity for the frequency-domain electromagnetic problem: Geophys. J. Int., 116, 1–4.CrossRefGoogle Scholar
  20. Nabighian, M. N., 1991, Electromagnetic theory for geophysical applications Electromagnetic Methods in Applied Geophysical: Vol.1, Theory, Geological Publishing House, 164–165.Google Scholar
  21. Newman, G. A., and Alumbaugh, D. L., 1995, Frequency domain modeling of airborne electromagnetic responses using staggered finite differences: Geophysical Prospecting, 43, 1021–1042.CrossRefGoogle Scholar
  22. Oldenburg, D. W., Haber, E., and Shekhtman R., 2013, Three Dimensional inversion of multisource time domain electromagnetic data: Geophysics, 78(1), 47–57.CrossRefGoogle Scholar
  23. Raiche, A., Annetts, D., and Sugeng, F., 2001, EM target response in complex hosts: Presented at ASEG 15th Geophysical Conference and Exhibition, Brisbane.Google Scholar
  24. Sengpiel, K. P., 1988, Approximate inversion of airborne EM data from a multilayered ground: Geophysical Prospecting, 36(4), 446–459.CrossRefGoogle Scholar
  25. Streich, R., 2009, 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy. Geophysics 74, F95–F105.CrossRefGoogle Scholar
  26. Tan, L., 2010, 2.5D numerical simulation software developing of Frequency domain AEM: MSc Thesis, China University of Geosciences, Beijing.Google Scholar
  27. Tartaras, E., and Beamish, D., 2005, Laterally-constrained inversion of fixed-wing frequency-domain AEM data: Presented at 12th European Meeting of Environmental and Near Surface Geophysics, Helsinki.Google Scholar
  28. Unsworth, M. J., Travis, B. J., and Chave, A. D., 1993, Electromagnetic induction by a finite electric dipole source over a 2-D earth: Geophysics, 58, 198–214.CrossRefGoogle Scholar
  29. Vallée, M. A., and Smith, R. S., 2009, Inversion of airborne time-domain electromagnetic data to a 1D structure using lateral constraints: Near Surface Geophysics, 7, 63–71.CrossRefGoogle Scholar
  30. Viezzoli, A., Auken, E., and Munday T., 2009, Spatially constrained inversion for quasi 3D modeling of airborne electromagnetic data-an application for environmental in the Lower Murray Region of South Australia: Exploration Geophysics, 40, 173–183.CrossRefGoogle Scholar
  31. Wang, W. P., Fang, Y. Y., and Zheng G. R, 2007, The exploration efficiency of the helicopter electromagnetic system in Longmen, Guangdong province: Geophysical & Geochemical exploration, 31(6), 546–550.Google Scholar
  32. Wang, Y. H., 2013, The Research on HTEM 2.5D Forward Modeling and Curve Analysis: MSc Thesis, Chendu University of Technology.Google Scholar
  33. Ward, S. H., and Hohmann, G. W., 1988, Electromagnetic theory for geophysical applications Electromagnetic Methods in Applied Geophysical: Vol.1, Theory, in Nabighian, M. N., Ed., Society of exploration geophysics, 131–311.Google Scholar
  34. Wilson, G. A., Raiche, A. P., and Sugeng F., 2006, 2.5D inversion of airborne electromagnetic data: Exploration Geophysics, 37, 363–371.CrossRefGoogle Scholar
  35. Yin, C. C., and Hodgres, G., 2007, Simulated annealing for airborne EM inversion; Geophysics, 72(4), F189–F196.CrossRefGoogle Scholar
  36. Yin, C. C., Ren, X. Y., Liu, Y. H., et al., 2015a, Review on airborne electromagnetic inversion theory and applications, Geophysics, 80(4), W17–W31.CrossRefGoogle Scholar
  37. Yin, C. C., Zhang, B., Liu, Y. H., et al., 2015b, 2.5-D forward modeling of the time-domain airborne EM system in areas with topographic relief: Chinese J. Geophys. (in Chinese), 58(4), 1411–1424.Google Scholar
  38. Yin, H. J., 2012, 2.5D forward of time-domain of airborne electromagnetic: MSc Thesis, China University of Geosciences, Beijing.Google Scholar
  39. Yi, M. J., and Sasaki, Y., 2015, 2-D and 3-D joint inversion of loop-loop electromagnetic and electrical data for resistivity and magnetic susceptibility: Geophys. J. Int., 203, 1085–1095.CrossRefGoogle Scholar
  40. Zhou, D. Q., Tan, L., Tan, H. D., et al., 2010, Inversion of frequency domain helicopter-borne electromagnetic data with Marquardt’s method: Chinese Journal of Geophysics, 56(2), 421–427.Google Scholar
  41. Zhou, J. J., 2011, Research on Airborne Transient Electromagnetic 2.5D Forward Modeling: MSc Thesis, Central South University.Google Scholar
  42. Zienkiewicz, O. C., 1977, The Finite Element Method, third edition: McGraw–Hill.Google Scholar

Copyright information

© Editorial Office of Applied Geophysics and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Wen-Ben Li
    • 1
  • Zhao-Fa Zeng
    • 1
  • Jing Li
    • 1
  • Xiong Chen
    • 1
  • Kun Wang
    • 1
  • Zhao Xia
    • 1
  1. 1.College of Geo-exploration Science and TechnologyJilin UniversityChangchunChina

Personalised recommendations