Applied Geophysics

, Volume 13, Issue 1, pp 1–12 | Cite as

Landslide monitoring in southwestern China via time-lapse electrical resistivity tomography

  • Dong Xu
  • Xiang-Yun Hu
  • Chun-Ling Shan
  • Rui-Heng Li


The dynamic monitoring of landslides in engineering geology has focused on the correlation among landslide stability, rainwater infiltration, and subsurface hydrogeology. However, the understanding of this complicated correlation is still poor and inadequate. Thus, in this study, we investigated a typical landslide in southwestern China via time-lapse electrical resistivity tomography (TLERT) in November 2013 and August 2014. We studied landslide mechanisms based on the spatiotemporal characteristics of surface water infiltration and flow within the landslide body. Combined with borehole data, inverted resistivity models accurately defined the interface between Quaternary sediments and bedrock. Preferential flow pathways attributed to fracture zones and fissures were also delineated. In addition, we found that surface water permeates through these pathways into the slipping mass and drains away as fissure water in the fractured bedrock, probably causing the weakly weathered layer to gradually soften and erode, eventually leading to a landslide. Clearly, TLERT dynamic monitoring can provide precursory information of critical sliding and can be used in landslide stability analysis and prediction.


time-lapse electrical resistivity tomography landslide hydrogeophysics monitoring preferential flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benoit, L., Briole, P., Martin, O., Thom, C., Malet, J. P., and Ulrich, P., 2015, Monitoring landslide displacements with the Geocube wireless network of low-cost GPS: Engineering Geology, 195, 111–121.CrossRefGoogle Scholar
  2. Bièvre, G., Jongmans, D., Winiarski, T., and Zumbo, V., 2012, Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps): Hydrological Processes, 26(14), 2128–2142.CrossRefGoogle Scholar
  3. Binley, A., Cassiani, G., and Deiana, R., 2010, Hydrogeophysics: opportunities and challenges: Bollettino Di Geofisica Teorica Ed Applicata, 51(4), 267–284.Google Scholar
  4. Binley, A., Hubbard, S., Huisman, J., Revil, A., Robinson, D., Singha, K., and Slater, L. D., 2015, The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales: Water Resources Research, 51(6), 3837–3866.CrossRefGoogle Scholar
  5. Bruno, F., and Martillier, F., 2000, Test Of High-Resolution Seismic Reflection And Other Geophysical Techniques On The Boup Landslide In The Swiss Alps: Surveys in Geophysics, 21(4), 335–350.CrossRefGoogle Scholar
  6. Cassiani, G., Godio, A., Stocco, S., Villa, A., Deiana, R., Frattini, P., and Rossi, M., 2009, Monitoring the hydrologic behaviour of a mountain slope via timelapse electrical resistivity tomography: Near Surface Geophysics, 7(5–6), 475–486.Google Scholar
  7. Chambers, J. E., Gunn, D. A., Wilkinson, P. B., Meldrum, P. I., Haslam, E., Holyoake, S., Kirkham, M., Kuras, O., Merritt, A., and Wragg, J., 2014, 4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment: Near Surface Geophysics, 12(1), 61–72.Google Scholar
  8. Chambers, J. E., Wilkinson, P. B., Kuras, O., Ford, J. R., Gunn, D. A., Meldrum, P. I., Pennington, C. V. L., Weller, A. L., Hobbs, P. R. N., and Ogilvy, R. D., 2011, Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK: Geomorphology, 125(4), 472–484.CrossRefGoogle Scholar
  9. Chu, R., Ni, S., Hu, X., Bao, F., Lu, P., and Li, Z., 2014, Joint Study of the Xishancun Landslide, Sichuan, Using Seismological and Electromagnetic Methods: AGU Fall Meeting Abstracts, 1, 08.Google Scholar
  10. Dahlin, T., and Zhou, B., 2004, A numerical comparison of 2D resistivity imaging with 10 electrode arrays: Geophysical Prospecting, 52(5), 379–398.CrossRefGoogle Scholar
  11. de Franco, R., et al., 2009, Monitoring the saltwater intrusion by time lapse electrical resistivity tomography: The Chioggia test site (Venice Lagoon, Italy): Journal of Applied Geophysics, 69(3–4), 117–130.CrossRefGoogle Scholar
  12. Gasperikova, E., Hubbard, S. S., Watson, D. B., Baker, G. S., Peterson, J. E., Kowalsky, M. B., Smith, M., and Brooks, S., 2012, Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior: Journal of Contaminant Hydrology, 142–143C(6), 33–49.CrossRefGoogle Scholar
  13. Gunther, T., Rucker, C., and Spitzer, K., 2006, Threedimensional modelling and inversion of dc resistivity data incorporating topography — II. Inversion: Geophysical Journal International, 166(2), 506–517.CrossRefGoogle Scholar
  14. Guo, X. J., Huang, X. Y., and Jia, Y. G., 2005, Forward modeling of different types of landslides with multielectrode electric method: Applied Geophysics, 2(1), 14–20.CrossRefGoogle Scholar
  15. Hayley, K., Bentley, L. R., and Gharibi, M., 2009, Timelapse electrical resistivity monitoring of salt-affected soil and groundwater: Water Resources Research, 45(7), 171–183.CrossRefGoogle Scholar
  16. Huang, R. Q., and Li, W. L., 2009, Analysis of the geohazards triggered by the 12 May 2008 Wenchuan Earthquake, China: Bulletin of Engineering Geology and the Environment, 68(3), 363–371.CrossRefGoogle Scholar
  17. Huang, R. Q., Zhao, J., Ju, N., Li, G., Lee, M. L., and Li, Y., 2013, Analysis of an anti-dip landslide triggered by the 2008 Wenchuan earthquake in China: Natural Hazards, 68(2), 1021–1039.CrossRefGoogle Scholar
  18. Hubner, R., Heller, K., Gunther, T., and Kleber, A., 2015, Monitoring hillslope moisture dynamics with surface ERT for enhancing spatial significance of hydrometric point measurements: Hydrology and Earth System Sciences, 19(1), 225–240.CrossRefGoogle Scholar
  19. Johnson, T. C., Slater, L. D., Ntarlagiannis, D., Day-Lewis, F. D., and Elwaseif, M., 2012, Monitoring groundwatersurface water interaction using time-series and timefrequency analysis of transient three-dimensional electrical resistivity changes: Water Resources Research, 48(7), W07506.CrossRefGoogle Scholar
  20. Karaoulis, M., Tsourlos, P., Kim, J. H., and Revil, A., 2014, 4D time-lapse ERT inversion: introducing combined time and space constraints: Near Surface Geophysics, 12(1), 25–34.Google Scholar
  21. Kim, J. H., Supper, R., Tsourlos, P., and Yi, M. J., 2013, Four-dimensional inversion of resistivity monitoring data through Lp norm minimizations: Geophysical Journal International, 195(3), 1640–1656.CrossRefGoogle Scholar
  22. Kim, J. H., Yi, M. J., Park, S. G., and Kim, J. G., 2009, 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model: Journal of Applied Geophysics, 68(4), 522–532.CrossRefGoogle Scholar
  23. Kuras, O., Pritchard, J. D., Meldrum, P. I., Chambers, J. E., Wilkinson, P. B., Ogilvy, R. D., and Wealthall, G. P., 2009, Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT): Comptes Rendus Geoscience, 341(10–11), 868–885.CrossRefGoogle Scholar
  24. LaBrecque, D. J., and Yang, X. J., 2001, Difference Inversion of ERT Data: a Fast Inversion Method for 3-D in Situ Monitoring: Journal of Environment and Engineering Geophysics, 6(2), 83–89.CrossRefGoogle Scholar
  25. Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Rizzo, E., and Sdao, F., 2005, 2D electrical resistivity imaging of some complex landslides in the Lucanian Apennine chain, southern Italy: Geophysics, 70(3), B11–B18.CrossRefGoogle Scholar
  26. Lebourg, T., Binet, S., Tric, E., Jomard, H., and El Bedoui, S., 2005, Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep seated landslide: Terra Nova, 17(5), 399–406.CrossRefGoogle Scholar
  27. Lebourg, T., Hernandez, M., Zerathe, S., El Bedoui, S., Jomard, H., and Fresia, B., 2010, Landslides triggered factors analysed by time lapse electrical survey and multidimensional statistical approach: Engineering Geology, 114(3–4), 238–250.CrossRefGoogle Scholar
  28. Lee, C. C., Zeng, L. S., Hsieh, C. H., Yu, C. Y., and Hsieh, S. H., 2012, Determination of mechanisms and hydrogeological environments of Gangxianlane landslides using geoelectrical and geological data in central Taiwan: Environmental Earth Sciences, 66(6), 1641–1651.CrossRefGoogle Scholar
  29. Li, S. C., Nie, L. C., Liu, B., Song, J., Liu, Z. Y., Su, M. X., and Xu, L., 2014, 3D electrical resistivity inversion using prior spatial shape constraints: Applied Geophysics, 10(4), 361–372.CrossRefGoogle Scholar
  30. Liu, C., Li, W., Wu, H., Lu, P., Sang, K., Sun, W., Chen, W., Hong, Y., and Li, R., 2013, Susceptibility evaluation and mapping of China’s landslides based on multi-source data: Natural Hazards, 69(3), 1477–1495.CrossRefGoogle Scholar
  31. Loke, M. H., 2014, RES2DINVx64 ver 4.03 Rapid 2-D Resistivity & IP inversion using the least-squares method: Software Manual.Google Scholar
  32. Loke, M. H., Chambers, J. E., Rucker, D. F., Kuras, O., and Wilkinson, P. B., 2013, Recent developments in the direct-current geoelectrical imaging method: Journal of Applied Geophysics, 95(8), 135–156.CrossRefGoogle Scholar
  33. Loke, M. H., Dahlin, T., and Rucker, D. F., 2014, Smoothness-constrained time-lapse inversion of data from 3D resistivity surveys: Near Surface Geophysics, 12(2007), 5–24.CrossRefGoogle Scholar
  34. Martorana, R., Lombardo, L., Messina, N., and Luzio, D., 2014, Integrated geophysical survey for 3D modelling of a coastal aquifer polluted by seawater: Near Surface Geophysics, 12(1), 45–59.Google Scholar
  35. Miller, C. R., Routh, P. S., Brosten, T. R., and McNamara, J. P., 2008, Application of time-lapse ERT imaging to watershed characterization: Geophysics, 73(3), G7–G17.CrossRefGoogle Scholar
  36. Niesner, E., 2010, Subsurface resistivity changes and triggering influences detected by continuous geoelectric monitoring: The Leading Edge, 29(8), 952–955.CrossRefGoogle Scholar
  37. Oldenborger, G. A., Knoll, M. D., Routh, P. S., and LaBrecque, D. J., 2007, Time-lapse ERT monitoring of an injection/withdrawal experiment in a shallow unconfined aquifer: Geophysics, 72(4), F177–F187.CrossRefGoogle Scholar
  38. Oldenburg, D. W., and Li, Y. G., 1999, Estimating depth of investigation in dc resistivity and IP surveys: Geophysics, 64(2), 403–416.CrossRefGoogle Scholar
  39. Perrone, A., Iannuzzi, A., Lapenna, V., Lorenzo, P., Piscitelli, S., Rizzo, E., and Sdao, F., 2004, Highresolution electrical imaging of the Varco d’Izzo earthflow (southern Italy): Journal of Applied Geophysics, 56(1), 17–29.CrossRefGoogle Scholar
  40. Perrone, A., Lapenna, V., and Piscitelli, S., 2014, Electrical resistivity tomography technique for landslide investigation: A review: Earth-Science Reviews, 135(4), 65–82.Google Scholar
  41. Qi, S., Xu, Q., Lan, H., Zhang, B., and Liu, J., 2010, Spatial distribution analysis of landslides triggered by 2008.5. 12 Wenchuan Earthquake, China: Engineering Geology, 116(1), 95–108.CrossRefGoogle Scholar
  42. Revil, A., Skold, M., Karaoulis, M., Schmutz, M., Hubbard, S. S., Mehlhorn, T. L., and Watson, D. B., 2013, Hydrogeophysical investigations of the former S-3 ponds contaminant plumes, Oak Ridge Integrated Field Research Challenge site, Tennessee: Geophysics, 78(4), En29–En41.CrossRefGoogle Scholar
  43. Rucker, C., Gunther, T., and Spitzer, K., 2006, Threedimensional modelling and inversion of dc resistivity data incorporating topography — I. Modelling: Geophysical Journal International, 166(2), 495–505.CrossRefGoogle Scholar
  44. Shan, C., Bastani, M., Malehmir, A., Persson, L., and Engdahl, M., 2014, Integrated 2d modeling and interpretation of geophysical and geotechnical data to delineate quick clays at a landslide site in southwest Sweden: Geophysics, 79(4), EN61–EN75.CrossRefGoogle Scholar
  45. Su, L. J., Xu, X. Q., Liao, H. J., and Geng, X. Y., 2015, Shear wave velocity analysis of a deep seated gravel landslide structure using the microtremor survey method: Proceedings of the International Symposium on Geohazards and Geomechanics (ISGG), Warwick, ENGLAND, 012026.Google Scholar
  46. Supper, R., Römer, A., Jochum, B., Bieber, G., and Jaritz, W., 2008, A complex geo-scientific strategy for landslide hazard mitigation – from airborne mapping to ground monitoring: Adv. Geosci., 14(14), 195–200.CrossRefGoogle Scholar
  47. Thomsen, R., Sondergaard, V. H., and Sorensen, K. I., 2004, Hydrogeological mapping as a basis for establishing site-specific groundwater protection zones in Denmark: Hydrogeology Journal, 12(5), 550–562.CrossRefGoogle Scholar
  48. Travelletti, J., Sailhac, P., Malet, J. P., Grandjean, G., and Ponton, J., 2012, Hydrological response of weathered clay-shale slopes: water infiltration monitoring with timelapse electrical resistivity tomography: Hydrological Processes, 26(14), 2106–2119.CrossRefGoogle Scholar
  49. Wilkinson, P. B., Chambers, J. E., Meldrum, P. I., Gunn, D. A., Ogilvy, R. D., and Kuras, O., 2010, Predicting the movements of permanently installed electrodes on an active landslide using time-lapse geoelectrical resistivity data only: Geophysical Journal International, 183(2), 543–556.CrossRefGoogle Scholar

Copyright information

© Editorial Office of Applied Geophysics and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Dong Xu
    • 1
  • Xiang-Yun Hu
    • 1
  • Chun-Ling Shan
    • 1
  • Rui-Heng Li
    • 1
  1. 1.Hubei Subsurface Multiscale Imaging Laboratory, Institute of Geophysics and GeomaticsChina University of Geosciences (Wuhan)WuhanChina

Personalised recommendations