Applied Geophysics

, Volume 13, Issue 1, pp 166–178 | Cite as

Anisotropic rock physics models for interpreting pore structures in carbonate reservoirs

  • Sheng-Jie Li
  • Yu Shao
  • Xu-Qiang Chen


We developed an anisotropic effective theoretical model for modeling the elastic behavior of anisotropic carbonate reservoirs by combining the anisotropic self-consistent approximation and differential effective medium models. By analyzing the measured data from carbonate samples in the TL area, a carbonate pore-structure model for estimating the elastic parameters of carbonate rocks is proposed, which is a prerequisite in the analysis of carbonate reservoirs. A workflow for determining elastic properties of carbonate reservoirs is established in terms of the anisotropic effective theoretical model and the pore-structure model. We performed numerical experiments and compared the theoretical prediction and measured data. The result of the comparison suggests that the proposed anisotropic effective theoretical model can account for the relation between velocity and porosity in carbonate reservoirs. The model forms the basis for developing new tools for predicting and evaluating the properties of carbonate reservoirs.


anisotropy rock physics pore structure modulus carbonates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agersborg, R. T., Hohansen, A., and Jakobsen, M., 2005, The T-matrix approach for carbonate rocks: 75th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1597–1600.Google Scholar
  2. Anselmetti, F., and Ebrili, G. P., 1999, The velocitydeviation log: A tool to predict pore type and permeability trends in carbonate drill holes from sonic and porosity or density log: AAPG Bulletin, 83(3), 450–466.Google Scholar
  3. Asseffa, S., McCann, C., and Sothcott, J., 2003, Velocity of compressional and shear waves in limestones: Geophysical Prospecting, 51(1), 1–13.CrossRefGoogle Scholar
  4. Brown, R., and Korringa, I., 1975, On the dependence of elastic properties of a porous rock on the compressibility of the pore fluid: Geophysics, 40(4), 608–616.CrossRefGoogle Scholar
  5. Budiansky, B., 1965, On the elastic moduli of some heterogeneous materials: J. Mech. Phys. Solid, 13(4), 223–227.CrossRefGoogle Scholar
  6. Carcione, J. M., and Avseth, P., 2015, Rock-physics templates for clay-rich source rocks: Geophysics, 80(5), D480–500.CrossRefGoogle Scholar
  7. Castagna, J., Batzle, M., and Eastwood, R., 1985, Relationships between compressional-wave and shearwave velocity in clastic silicate rocks: Geophysics, 50(4), 571–581.CrossRefGoogle Scholar
  8. Choquette, P. W., and Pray, L. C., 1970, Geologic nomenclature and classification of porosity in sedimentary carbonates: AAPG Bulletin, 54(2), 207–244.Google Scholar
  9. Christensen, R. M., 2005, Mechanics of composite materials: Wiley, New York, 31–71.Google Scholar
  10. Dunham, R. J., 1962, Classification of carbonate rocks according to depositional texture: AAPG Bulletin, 46(1), 108–121.Google Scholar
  11. Eberli, G. P., Baechle, G., Anselmetti, F., Incze, M., Dong, W., Tura, A., and Saparkman, G., 2003, Factors controlling elastic properties in carbonate sediments and rocks: The Leading Edge, 22(7), 654–660.CrossRefGoogle Scholar
  12. Eshelby, J. D., 1957, The determination of the elastic field of an ellipsoidal inclusion, and related problem: Proc. Roy. Soc, A241(1226), 376–396.CrossRefGoogle Scholar
  13. Hornby, B. E., Schwartz, M., and Hundson, A., 1994, Anisotropic effective-medium modeling of the elastic properties of shales: Geophysics, 59(10), 1570–1583.CrossRefGoogle Scholar
  14. Huang, H., Stewart, R. R., Sil, S., and Dyaur, N., 2015, Fluid substitution effect on seismic anisotropy: J. Geophys. Res, 120(2), 850–863.CrossRefGoogle Scholar
  15. Hudson, J. A., 1980, Overall properties of a cracked soild: Mathematical Proceedings of the Cambridge Philosophical Society, 88(2), 371–384.CrossRefGoogle Scholar
  16. Keys R. G., and Xu, S., 2002, An approximation for the Xu-White velocity model. Geophysics, 67(5), 1406–1414.CrossRefGoogle Scholar
  17. Krief, M., Garat, J., Stellingwerff, J., and Ventre, J., 1990, A petrophysical interpretation using the velocities of P and S waves (full waveform sonic): The Log Analyst, 31(6), 355–369.Google Scholar
  18. Kumar M., and Han, De-hua, 2005, Pore shape effect on elastic properties of carbonate rocks: 75th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, RP1.3, 1477–1480.Google Scholar
  19. Kuster, G. T., and Toksoz, M. N., 1974, Velocity and attenuation of seismic waves in two-phase media:Part I: Theoretical formulations: Geophysics, 39(5), 587–606.CrossRefGoogle Scholar
  20. Landro, M., 2015, Aspect ratio histograms of 3D ellipsoids and 2D ellipses—Analytical relations and numerical examples: Geophysics, 80(2), D429–D440.CrossRefGoogle Scholar
  21. Li, J. Y., and Chen, X. H., 2013, A rock-physical modeling method for carbonate reservoirs at seismic scale: Appl. Geophys., 10(1), 1–13.CrossRefGoogle Scholar
  22. Lucia, F. J., 1995, Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization: AAPG Bulletin, 79(9), 1275–1300.Google Scholar
  23. Mavko, G., Mukerkji T., and Dvorkin, J., 2001, The rock physics handbook: Tools for seismic analysis inporous media: Cambridge University Press, New York, 169–224.Google Scholar
  24. Regnet, J. B., Robion, P., David, C., Fortin, J., Brigaud, B., and Yven B., 2015, Acoustic and reservoir properties of microporous carbonate rocks: Implication of micrite particle size and morphology, J. Geophys. Res, 120, 790–811.CrossRefGoogle Scholar
  25. Walpole, L. J., 1969, On overall elastic moduli of composite materials: J. Mech. Phys. Sol., 17(4), 235–251CrossRefGoogle Scholar
  26. Weger, R. J., Baechle, G. T., Masaferro, J. L., and Everli. G. P., 2004, Effect of porestructure on sonic velocity in carbonate: 74th Ann. Internat. Mtg., Soc. Explor. Geophys., Expanded Abstracts, 1774–1777.Google Scholar
  27. Willis, J. R., 1977, Bounds and self-consistent estimates for the overall properties of anisotropic composites: J. Mech. Phys. Solids, 25(3), 185–202.CrossRefGoogle Scholar
  28. Xu S., and Payne, M. A., 2009, Modeling elastic Properties in carbonate rocks: The Leading Edge, 28(1), 66–74.CrossRefGoogle Scholar
  29. Xu, S., and White, R. E., 1995, A new velocity model for shear-wave velocity prediction: Geophysical Prospecting, 43(1), 91–118.CrossRefGoogle Scholar
  30. Yu, H., Ba, J., Carcione, J., Li, J. S., Tang, G., Zhang, X. Y., He, Z. H., and Ouyang, H., 2014, Rock physics modeling of heterogeneous carbonate reservoirs: porosity estimation and hydrocarbon detection: Appl. Geophys., 11(1), 9–22.CrossRefGoogle Scholar

Copyright information

© Editorial Office of Applied Geophysics and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Petroleum Resource and ProspectingChina University of Petroleum (Beijing)BeijingChina
  2. 2.CNPC Key Lab of China University of Petroleum (Beijing)BeijingChina
  3. 3.Research Institute of Exploration and DevelopmentXinjiang Oilfield, PetroChinaKaramay, XinjiangChina

Personalised recommendations