Potential Effects of Episodic Deposition on Nutrients and Heavy Metals in Decomposing Litters of Suaeda glauca in Salt Marsh of the Yellow River Estuary, China

  • Bingbing Chen
  • Zhigao SunEmail author


Episodic deposition has been recognized as a major factor affecting the decomposition rate of detrital material in salt marshes. In this paper, three one-off burial treatments, no burial treatment (0 cm, NBT), current burial treatment (10 cm, CBT) and strong burial treatment (20 cm, SBT), were designed in intertidal zone of the Yellow River Estuary to determine the potential influences of episodic deposition on nutrient (C, N) and heavy metal (Pb, Cr, Cu, Zn, Ni, Mn, Cd, V and Co) variations in decomposing litters of Suaeda glauca. Results showed that although various burial treatments showed no statistical difference in decomposition rate of S. glauca, the values generally followed the sequence of CBT (0.002 403/d) > SBT (0.002 195/d) > NBT (0.002 060/d). The nutrients and heavy metals in decomposing litters of the three burial treatments exhibited different variations except for N, Cu, Cr, Ni and Co. Except for Mn, no significant differences in C, N, Pb, Cr, Cu, Zn, Ni, V and Co concentrations occurred among the three treatments (P > 0.05). With increasing burial depth, Cr and Cd levels generally increased while Cu, Ni and Mn concentrations decreased. Although episodic deposition was generally favorable for C and N release from S. glauca, its influence on release was insignificant. In the three burial treatments, Pb, Cr, Zn, Ni, Mn, V and Co stocks in S. glauca generally evidenced the export of metals from litter to environment, and, with increasing burial depth, the export amounts increased greatly. The S. glauca were particular efficient in binding Cd and releasing Pb, Cr, Zn, Ni, Mn, V and Co, and, with increasing burial depth, stocks of Cu in decomposing litters generally shifted from release to accumulation. The experiment indicated that the potential eco-toxic risk of Pb, Cr, Zn, Ni, Mn, V and Co exposure would be serious as the strong burial episodes occurred in S. glauca marsh.


decomposition nutrient and metal episodic deposition Suaeda glauca Yellow River Estuary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akanil N, Middleton B, 1997. Leaf litter decomposition along the Porsuk River, Eskisehir, Turkey. Canadian Journal of Botany, 75(8): 1394–1397. doi: 10.1139/b97-853CrossRefGoogle Scholar
  2. Anesio A M, Abreu P C, Biddanda B A, 2003. The role of free and attached microorganisms in the decomposition of estuarine macrophyte detritus. Estuarine, Coastal and Shelf Science, 56(2): 197–201. doi: 10.1016/S0272-7714(02)00152-XCrossRefGoogle Scholar
  3. Baldantoni D, Alfani A D, Tommasi P et al., 2004. Assessment of macro and microelement accumulation capability of two aquatic plants. Environmental Pollution, 130(2): 149–156. doi: 10.1016/j.envpol.2003.12.015CrossRefGoogle Scholar
  4. Benner R, Maccubbin A E, Hodson R E, 1984. Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora. Applied and Environmental Microbiology, 47(5): 998–1004. doi: 0099-2240/84/050998-07-02.00/0Google Scholar
  5. Berg B, 1986. Nutrient release from litter anlhumus in coniferous forest soils-a mini review. Scandinavian Journal of Forest Research, 1(3): 359–369. doi: 10.1080/02827588609382428CrossRefGoogle Scholar
  6. Bertoli M, Brichese G, Michielin D et al., 2016. Seasonal and multi-annual patterns of Phragmites australis decomposition in a wetland of the Adriatic area (Northeast Italy): a three-years analysis. Knowledge and Management of Aquatic Ecosystems, 417(14). doi: 10.1051/kmae/2016001Google Scholar
  7. Bouchard V, Lefeuvre J C, 2000. Primary production and macro-detritus dynamics in a European salt marsh: carbon and nitrogen budgets. Aquatic Botany, 67(1): 23–42. doi: 10.1016/S03043770(99)00086-8CrossRefGoogle Scholar
  8. Canhoto C, Simões S, Gonçalves A L et al., 2017. Stream salinization and fungal-mediated leaf decomposition: A microcosm study. Science of the Total Environment, 599-600: 1638–1645. doi: 10.1016/j.scitotenv.2017.05.101CrossRefGoogle Scholar
  9. Cao Dandan, Wang Dong, Yang Xue et al., 2016. Decomposition of two sumerged macrophytes and their mixture: effect of sediment burial. Acta Hydrobiologica Sinica, 40(2): 327–336. (in Chinese)Google Scholar
  10. Cao Lei, Song Jinming, Li Xuegang et al., 2015. Biogeochemical characteristics of soil C, N, P in the tidal wetlands of the Yellow River Delta. Marine Sciences, 39(1): 84–92. (in Chinese)Google Scholar
  11. Chen Huili, 2008. Effect of Spartina alterniflora Invasions on Nematode Communities in Salt Marshes of the Yangtze River Estuary: Patterns and Mechanisms. Shanghai: Fudan University. (in Chinese)Google Scholar
  12. Chen Hui, 2013. Carbon Sequestration, Litter Decomposition and Consumption in Two Subtropical Mangrove Ecosystems of China. Xiamen: Xiamen University. (in Chinese)Google Scholar
  13. Chen Weifeng, Shi Yanxi, 2010. Distribution characteristics of microbes in new-born wetlands of the Yellow River Delta. Acta Agrestia Sinica, 18(6): 859–864. (in Chinese)Google Scholar
  14. Connolly C T, Sobczak W V, Findlay S E G, 2014. Salinity effects on Phragmites decomposition dynamics among the Hudson River's freshwater tidal wetlands. Wetlands, 34(3): 575–582. doi: 10.1007/s13157-014-0526-1CrossRefGoogle Scholar
  15. Costantini M L C, Rossi L, Fazi S et al., 2009. Detritus accumulation and decomposition in a coastal lake (Acquatina-southern Italy). Aquatic Conservation Marine and Freshwater Ecosystems, 19(5): 566–574. doi: 10.1002/aqc.1004CrossRefGoogle Scholar
  16. Craft C, 2007. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and U.S tidal marshes. Limnology and Oceanography, 52(3): 1220–1230. doi: 10.1002/hed.20751CrossRefGoogle Scholar
  17. Cui B S, Yang Q C, Yang Z F et al., 2009. Evaluating the ecological performance of wetland restoration in the Yellow River Delta, China. Ecological Engineering, 35(7): 1090–1103. doi: 10.1016/j.ecoleng.2009.03.022CrossRefGoogle Scholar
  18. Denward C M T, Edling H, Tranvik L J, 1999. Effects of solar radiation on bacterial and fungal desity on aquatic plant detritus. Freshwater Biology, 41(3): 575–582. doi: 10.1046/ j.1365-2427.1999.00407.xCrossRefGoogle Scholar
  19. Du Laing G, Van Ryckegem G, Tack F M G et al., 2006. Metal accumulation in intertidal litter through decomposition leaf blades, sheaths and stems of Phragmites australis. Chemosphere, 63(11): 1815–1823. doi: 10.1016/j.chemosphere.2005.10.034CrossRefGoogle Scholar
  20. Fan Xiaomei, Liu Gaohuan, Tang Zhipeng, 2010. Analysis on main contributors influencing soil salinization of Yellow River Delta. Journal of Soil and Water Conservation, 24(1): 139–144. (in Chinese)Google Scholar
  21. Freeman C, Ostle N J, Fenner N et al., 2004. A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biology and Biochemistry, 36(10): 1663–1667. doi: 10.1016/j.soilbio.2004.07.012CrossRefGoogle Scholar
  22. Gadd G M, 1993. Interactions of fungi with toxic metals. New Phytologist, 124(1): 25–60. doi: 0000-0001-6874-870XCrossRefGoogle Scholar
  23. Gessner M O, 2000. Breakdown and nutrient dynamics of submerged Phragmites shoots in the littoral zone of a temperate hardwater lake. Aquatic Botany, 66(1): 9–20. doi: 10.1016/S0304-3770(99)00022-4CrossRefGoogle Scholar
  24. Gessner M O, 2001. Mass loss, fungal colonization and nutrient dynamics of Phragmites austrialis leaves during senescence and early aerial decay. Aquatic Botany, 69(2): 325–339. doi: 10.1016/S0304-3770(01)00146-2CrossRefGoogle Scholar
  25. Gladstone-Gallagher R V, Lundquist C J, Pilditch C A, 2014. Mangrove (Avicennia marina subsp. australasica) litter production and decomposition in a temperate estuary. New Zealand Journal of Marine and Freshwater Research, 48(1): 24–37. doi: 10.1080/00288330.2013.827124CrossRefGoogle Scholar
  26. Guan Yuezhang, 2013. Responses of Decomposition of Phragmites australis Litter to Simulated Temperature Enhancement in Coastal Wetland. Shanghai: East China Normal University.Google Scholar
  27. Harmon M E, Baker G A, Spycher G et al., 1990. Leaf litter decomposition in the Picea/tsuga forest of Olympic National Park, Washington, USA. Forest Ecology and Management, 31(1): 55–66. doi: 10.1016/0378-1127(90) 90111-NCrossRefGoogle Scholar
  28. Hart B T, 1982. Uptake of trace metals by sediments and suspended particulates: a review. Hydrobiologia, 91(1): 299–313. doi: 10.1007/BF00940121CrossRefGoogle Scholar
  29. Hieber M, Gessner M O, 2002. Contribution of stream detritivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology, 83(4): 1026–1038. doi: 10.2307/3071911CrossRefGoogle Scholar
  30. Hobbic S H, 1996. Temperature and plant species control over litter decomposition in Alaskan Tundra. Ecological Monographs, 66(4): 503–522. doi: 10.2307/2963492CrossRefGoogle Scholar
  31. Hossain M, Siddique M R H, Abdullah S M R et al., 2014. Nutrient dynamics associated with leaching and microbial decomposition of four abundant mangrove species leaf litter of the Sundarbans, Bangladesh. Wetlands, 34(3): 439–448. doi: 10.1007/s13157-013-0510-1CrossRefGoogle Scholar
  32. Hou Guanyun, Zhai Shuijing, Gao Hui et al., 2017. Effect of salinity on silicon, carbon, and nitrogen during decomposition of Spartina alterniflora litter. Acta Ecologica Sinica, 37(1): 184–191. (in Chinese)Google Scholar
  33. Hu Hongyou, Zhang Zhaochao, Li Xiong, 2010. Influences of salinity on mass and energy dynamics during decomposition of Kandelia candel leaf litter. Chinese Journal of Plant Ecology, 34(12): 1377–1385. (in Chinese)Google Scholar
  34. Hu Weifang, Zeng Congsheng, Zhang Meiying et al., 2017. Effect of salinity and inundation on the Cyperus malaccensis litter decomposition and carbon dioxide release. Acta Scientiae Circumstantiae, 37(10): 4011–4018. (in Chinese)Google Scholar
  35. Huang Linan, Lan Chongyu, Shu Wensheng, 2001. Leaf decomposition of two species in a mangrove community in Futian of Shenzhen. Chinese Journal of Applied Ecology, 12(1): 35–38. (in Chinese)Google Scholar
  36. Janousek C N, Buffington K J, Guntenspergen G R et al., 2017. Inundation, vegetation, and sediment effects on litter decomposition in Pacific Coast tidal marshes. Ecosystems, 20: 1296–1310. doi: 10.1007/s10021-017-0111-6CrossRefGoogle Scholar
  37. JIA Jia, BAI Junhong, WANG Wei et al., 2018. Changes of biogenic elements in Phragmites australis and Suaeda salsa from salt marshes in Yellow River delta, China. Chinese Geographical Science, 28(3): 411–419. doi: 10.1007/s11769-018-0959-1CrossRefGoogle Scholar
  38. Jones J A, Cherry J A, Mckee K L, 2016. Species and tissue type regulate long-term decomposition of brackish marsh plants grown under elevated CO2 conditions. Estuarine Coastal and Shelf Science, 169: 38–45. doi: 10.1016/j.ecss.2015.11.033CrossRefGoogle Scholar
  39. Keuskamp J A, Hefting M M, Dingemans B J J et al., 2015. Effects of nutrient enrichment on mangrove leaf litter decomposition. Science of the Total Environment, 508(508C): 402–410. doi: 10.1016/j.scitotenv.2014.11.092CrossRefGoogle Scholar
  40. Köchy M, Wilson S D, 1997. Litter decomposition and nitrogen dynamics in Aspen forest and mixed-grass prairie. Ecology, 78(3): 732–739. doi: 10.2307/2266053CrossRefGoogle Scholar
  41. Kok C J, Meesters H W G, Kempers A J, 1990. Decomposition rate, chemical composition and nutrient recycling of Nym-phaea alba, L. floating leaf blade detritus as influenced by pH, alkalinity and aluminium in laboratory experiments. Aquatic Botany, 37(3): 215–227. doi: 10.1016/0304-3770(90)90071-RCrossRefGoogle Scholar
  42. Kristensen E, Blackburn T, 1987. The fate of organic carbon and nitrogen in experimental marine sediment systems: influence of bioturbation and anoxia. Journal of Marine Research, 45(1): 231–257. doi: 10.1357/002224087788400927CrossRefGoogle Scholar
  43. Laiho R, Laine J, Trettin C C et al., 2004. Scots pine litter decomposition along drainage succession and soil nutrient gradients in peatland forests, and the effects of inter-annual weather variation. Soil Biology and Biochemistry, 36(7): 1095–1109. doi: 10.1016/j.soilbio.2004.02.020CrossRefGoogle Scholar
  44. Leng Yu, Liu Yiting, Liu Shuang et al., 2013. Community structure and diversity of macrobenthos in southern intertidal zone of Yellow River Delta, China. Chinese Journal of Ecology, 32(1): 3054–3062. (in Chinese)Google Scholar
  45. Li Hui, Liu Yazhu, Li Jing et al., 2016. Dynamics of litter decomposition of dieback Phragmites in Spartina-invaded salt marshes. Ecological Engineering, 90: 459–465. doi: 10.1016/j.ecoleng.2016.01.012CrossRefGoogle Scholar
  46. Li Jiarui, 2011. Macrobenthic Ecology of the Intertidal Zones of Yellow River Delta. Qingdao: Ocean University of China. (in Chinese)Google Scholar
  47. Li Yuanfang, Huang Yunlin, Li Shuanke, 1991. A primarily analysis on the coastal physiognomy and deposition of the modern Yellow River Delta. Acta Oceanologica Sinica, 13(5): 662–671. (in Chinese)Google Scholar
  48. Li T, Ye Y, 2014. Dynamics of decomposition and nutrient release of leaf litter in Kandelia obovata mangrove forests with different ages in Jiulongjiang estuary, China. Ecological Engineering, 73: 454–460. doi: 10.1016/j.ecoleng.2014.09.102CrossRefGoogle Scholar
  49. Lopes M L, Martins P, Ricardo F et al., 2011. In situ experimental decomposition studies in estuaries: a comparison of Phrag-mites australis and Fucus vesiculosus. Estuarine, Coastal and Shelf Science, 92(4): 573–580. doi: 10.1016/j.ecss.2011.02.014CrossRefGoogle Scholar
  50. Lovley D R L, Phillips E J P, 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dis-similatory reduction of iron or manganese. Applied and Environmental Microbiology, 54(6): 1472–1480. doi: 0099-2240/88/061472-09-02.00/0Google Scholar
  51. Mendelssohn I A, Sorrell B K, Brix H et al., 1999. Controls on soil cellulose decomposition along a salinity gradient in a Phragmites australis wetland in Denmark. Aquatic Botany, 64(3-4): 381–398. doi: 10.1016/S0304-3770(99)00065-0CrossRefGoogle Scholar
  52. Menéndez M, Sanmartí N, 2007. Geratology and decomposition of Spartina versicolor in a brackish Mediterranean marsh. Estuarine, Coastal and Shelf Science, 74(1): 320–330. doi: 10.1016/j.ecss.2007.04.024CrossRefGoogle Scholar
  53. Menéndez M, 2009. Response of early Ruppia cirrhosa litter breakdown to nutrient addition in a coastal lagoon affected by agricultural runoff. Estuarine, Coastal and Shelf Science, 82(4): 608–614. doi: 10.1016/j.ecss.2009.02.029CrossRefGoogle Scholar
  54. Mou Xiaojie, 2010. Study on the Nitrogen Biological Cycling Characteristics and Cycling model of Tidal Wetland Ecosystem in Yellow River Estuary. Yantai: Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences. (in Chinese)Google Scholar
  55. Neher D A, Barbercheck M E, El-Allaf S M et al., 2003. Effects of disturbance and ecosystem on decomposition. Applied Soil Ecology, 23(2): 165–179. doi: 10.1016/S0929-1393(03)00043-XCrossRefGoogle Scholar
  56. Nordhaus I, Salewski T, Jennerjahn T C, 2017. Interspecific variations in mangrove leaf litter decomposition are related to labile nitrogenous compounds. Estuarine Coastal and Shelf Science, 192: 137–148. doi: 10.1016/j.ecss.2017.04.029CrossRefGoogle Scholar
  57. Novotnik B, Zuliani T, Scancar J et al., 2014. Inhibition of the nitrification process in activated sludge by trivalent and hexavalent chromium, and partitioning of hexavalent chromium between sludge compartments. Chemosphere, 105(3): 87–94. doi: 10.1016/j.chemosphere.2013.12.096CrossRefGoogle Scholar
  58. Olson J S, 1963. Energy storage and balance of producers and decomposers in ecological system. Ecology, 44(2): 322–331. doi: 10.2307/1932179CrossRefGoogle Scholar
  59. Pan X H, Liu Z J, Chen Z et al., 2014. Investigation of Cr(VI) reduction and Cr(III) immobilization mechanism by planktonic cells and biofilms of Bacillus subtilis ATCC-6633. Water Research, 55(55C): 21–29. doi: 10.1016/j.watres.2014.01.066CrossRefGoogle Scholar
  60. Pereira P, Caçador I, Vale C et al., 2007. Decomposition of belowground litter and metal dynamics in salt marshes (Tagus Estuary, Portugal). Science of the Total Environment, 380(1): 93–101. doi: 10.1016/j.scitotenv.2007.01.056CrossRefGoogle Scholar
  61. Quintino V, Sangiorgio F, Ricardo F et al., 2009. In situ experimental study of reed leaf decomposition along a full salinity gradient. Estuarine, Coastal and Shelf Science, 85(3): 497–506. doi: 10.1016/j.ecss.2009.09.016CrossRefGoogle Scholar
  62. Laiho R, Laine J, Trettin C C et al., 2004. Scots pine litter decomposition along drainage succession and soil nutrient gradients in peatland forests, and the effects of inter-annual weather variation. Soil Biology and Biochemistry, 36(7): 1095–1109. doi: 10.1016/j.soilbio.2004.02.020CrossRefGoogle Scholar
  63. Roache M C, Bailey P C, Boon P I, 2006. Effects of salinity on the decay of the freshwater macrophyte, Triglochin procerum. Aquatic Botany, 84(1): 45–52. doi: 10.1016/j.aquabot.2005.07.014CrossRefGoogle Scholar
  64. Sánchez-Andrés R, Sánchez-Carrillo S, Alatorre L C et al., 2010. Litterfall dynamics and nutrient decomposition of arid mangroves in the Gulf of California: their role sustaining ecosystem heterotrophy. Estuarine, Coastal and Shelf Science, 89(3): 191–199. doi: 10.1016/j.ecss.2010.07.005CrossRefGoogle Scholar
  65. Shao Xuexin, Liang Xinqiang, Wu Ming et al., 2014. Decomposition and phosphorus dynamics of the litters in standing and litterbag of the Hangzhou Bay coastal wetland. Environmental Science, 35(9): 3381–3388. (in Chinese)Google Scholar
  66. Sheng Huaxia, 2009. Studies on Dynamics of Heavy Metal with Decomposition of Litter Fall in Mangrove Wetland at Jiulong-jiang River Estuary. Xiamen: Xiamen University. (in Chinese)Google Scholar
  67. Simões M P, Calado M L, Madeira M et al., 2011. Decomposition and nutrient release in halaphytes of a Mediterranean salt marsh. Aquatic Botany, 94(4): 119–126. doi: 10.1016/j.aquabot.2011.01.001CrossRefGoogle Scholar
  68. Stagg C L, Schoolmaster D R, Krauss K W et al., 2017. Causal mechanisms of soil organic matter decomposition: deconstructing salinity and flooding impacts in coastal wetlands. Ecology, 98(8): 2003–2018. doi: 10.1002/ecy.1890CrossRefGoogle Scholar
  69. Stumm W, Morgan J J, 1996. Aquatic Chemistry-chemical Equilibria and Rates in Natural Waters. USA: John Wiley & Sons, Inc.Google Scholar
  70. Sun Lijuan, Duan Dechao, Peng Cheng et al., 2014. Influence of sulfur on the speciation transformation and phyto-availability of heavy metals in soil: a review. Chinese Journal of Applied Ecology, 25(7): 2141–2148. (in Chinese)Google Scholar
  71. Sun M Y, Lee C, Aller R C, 1993. Laboratory studies of oxic and anoxic degradation of chlorophyll-a in Long Island Sound sediments. Geochimica et Cosmochimica Acta, 57(1): 147–157. doi: 10.1016/0016-7037(93)90475-CCrossRefGoogle Scholar
  72. Sun Z G, Mou X J, Liu J S, 2012. Effects of flooding regimes on the decomposition and nutrient dynamics of Calamagrostis angustifolia litter in the Sanjiang Plain of China. Environmental Earth Sciences, 66(8): 2235–2246. doi: 10.1007/s12665-011-1444-7CrossRefGoogle Scholar
  73. Sun Z G, Mou X J, 2016. Effects of sediment burial disturbance on macro and microelement dynamics in decomposing litter of Phragmites australis in the coastal marsh of the Yellow River estuary, China. Environmental Science and Pollution Research, 23(6): 5189–5202. doi: 10.1007/s11356-015-5756-0CrossRefGoogle Scholar
  74. Sun Wenguang, Gan Zhuoting, Sun Zhigao et al., 2013. Spatial distribution characteristics of Fe and Mn contents in the new-born coastal marshes in the Yellow River estuary. Environmental Science, 34(11): 4411–4419. (in Chinese)Google Scholar
  75. Sun Zhigao, Mou Xiaojie, Wang Lingling et al., 2015. Effects of sedimentation intensity on decomposition and nitrogen dynamics of Suaeda salsa litters in salt marshes in tidal bank of the Yellow River estuary. Wetland Science, 13(2): 135–144. (in Chinese)Google Scholar
  76. Tong C, Zhang L H, Wang W Q et al., 2011. Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh. Environmental Research, 111(7): 909–916. doi: 10.1016/j.envres.2011.05.023CrossRefGoogle Scholar
  77. Vandecasteele B, Meers M, Vervaeke P et al., 2005. Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere, 58(8): 995–1002. doi: 10.1016/j.chemosphere.2004.09.062CrossRefGoogle Scholar
  78. Vargo S M, Neely R K, Kirkwood S M, 1998. Emergent plant decomposition and sedimentation: Response to sediments varying in texture, phosphorus content and frequency of deposition. Environmental and Experimental Botany, 40(1): 43–58. doi: 10.1016/S0098-8472(98)00020-3CrossRefGoogle Scholar
  79. Wang S C, Jurik T W, van der Valk A G, 1994. Effects of sediment load on various stages in the life and death of cattail (Typha×Glauca). Welands, 14(3): 166–173. doi: 10.1007/BF03160653CrossRefGoogle Scholar
  80. Weber F A, Voegelin A, Kaegi R et al., 2009. Contaminant mobilization by metallic copper and metal sulphide colloids in flooded soil. Nature Geoscience, 2(4): 267–271. doi: 10.1038/ngeo476CrossRefGoogle Scholar
  81. Webster J R, Benfield E F, 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics, 17(17): 567–594. doi: 0066-4162/86/1120-0567-02.00CrossRefGoogle Scholar
  82. Weis J S, Weis P, 2004. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International, 30(5): 685–700. doi: 10.1016/j.envint.2003.11.002CrossRefGoogle Scholar
  83. Wei Zishang, Li Huiyan, Li Keli et al., 2017. Effects of simulated N deposition and burial on Flaveria bidentis litter decomposition and nutrient release. Chinese Journal of Ecology, 36(9): 2412–2422. (in Chinese)Google Scholar
  84. Windham L, Weis J S, Weis P, 2004. Metal dynamics of plant litter of Spartina alterniflora and Phragmites australis in metal-contaminated salt marshes. Part 1: patterns of decomposition and metal uptake. Environmental Toxicology and Chemistry, 23(6): 1520–1528. doi: 10.1897/03-284CrossRefGoogle Scholar
  85. Xie Y H, Wen M Z, Yu D et al., 2004. Growth and resource allocation of water hyacinth as affected by gradually increasing nutrient concentrations. Aquatic Botany, 79(3): 257–266. doi: 10.1016/j.aquabot.2004.04.002CrossRefGoogle Scholar
  86. Xu X G, Guo H H, Chen X L et al., 2002. A multi-scale study on land use and land cover quality change: the case of the Yellow River Delta in China. Geojournal, 56(3): 177–183. doi: 10.1023/A:1025175409094CrossRefGoogle Scholar
  87. Zawislanski P T, Chau S, Mountford H et al., 2001. Accumulation of selenium and trace metals on plant litter in a tidal marsh. Estuarine, Coastal and Shelf Science, 52(5): 589–603. doi: 10.1006/ecss.2001.0772CrossRefGoogle Scholar
  88. Zhang H G, Cui B S, Xiao R et al., 2010. Heavy metals in water, soils and plants in riparian wetlands in the Pearl River Estuary, South China. Procedia Environmental Sciences, 2(6): 1344–1354. doi: 10.1016/j.proenv. 2010.10.145CrossRefGoogle Scholar
  89. Zhang L H, Tong C, Marrs R et al., 2014. Comparing litter dynamics of Phragmites australis and Spartina alterniflora in a sub-tropical Chinese estuary: contrasts in early and late decomposition. Aquatic Botany, 117(5): 1–11. doi: 10.1016/j.aquabot.2014.03.003CrossRefGoogle Scholar
  90. Zhao Q Q, Bai J H, Liu P P et al., 2014. Decomposition and carbon and nitrogen dynamics of Phragmites australis litter as affected by flooding periods in coastal wetlands. Clean-Soil, Air, Water, 43(3): 441–445. doi: 10.1002/clen.201300823CrossRefGoogle Scholar
  91. Zhou H C, Tam N F Y, Lin Y M et al., 2012. Changes of condensed tannins during decomposition of leaves of Kandelia obovata in a subtropical mangrove swamp in China. Soil Biology and Biochemistry, 44(1): 113–121. doi: 10.1016/j.soilbio.2011.09.015CrossRefGoogle Scholar

Copyright information

© Science Press, Northeast Institute of Geography and Agroecology, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Humid Subtropical Eco-geographical Process (Fujian Normal University)Ministry of EducationFuzhouChina
  2. 2.Institute of GeographyFujian Normal UniversityFuzhouChina
  3. 3.Fujian Provincial Key Laboratory for Subtropical Resources and EnvironmentFujian Normal UniversityFuzhouChina

Personalised recommendations