Chinese Geographical Science

, Volume 29, Issue 5, pp 725–740 | Cite as

Assessing the Dynamics of Grassland Net Primary Productivity in Response to Climate Change at the Global Scale

  • Yangyang Liu
  • Yue Yang
  • Qian Wang
  • Muhammad Khalifa
  • Zhaoying Zhang
  • Linjing Tong
  • Jianlong LiEmail author
  • Aiping ShiEmail author


Understanding the net primary productivity (NPP) of grassland is crucial to evaluate the terrestrial carbon cycle. In this study, we investigated the spatial distribution and the area of global grassland across the globe. Then, we used the Carnegie-Ames-Stanford Approach (CASA) model to estimate global grassland NPP and explore the spatio-temporal variations of grassland NPP in response to climate change from 1982 to 2008. Results showed that the largest area of grassland distribution during the study period was in Asia (1737.23 × 104 km2), while the grassland area in Europe was relatively small (202.83 × 104 km2). Temporally, the total NPP increased with fluctuations from 1982 to 2008, with an annual increase rate of 0.03 Pg C/yr. The total NPP experienced a significant increasing trend from 1982 to 1995, while a decreasing trend was observed from 1996 to 2008. Spatially, the grassland NPP in South America and Africa were higher than the other regions, largely as a result of these regions are under warm and wet climatic conditions. The highest mean NPP was recorded for savannas (560.10 g C/(m2·yr)), whereas the lowest was observed in open shrublands with an average NPP of 162.53 g C/(m2·yr). The relationship between grassland NPP and annual mean temperature and annual precipitation (AMT, AP, respectively) varies with changes in AP, which indicates that, grassland NPP is more sensitive to precipitation than temperature.


Carnegie-Ames-Stanford Approach (CASA) net primary productivity (NPP) spatio-temporal dynamic climate variation grassland ecosystems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandrov G A, Oikawa T, Esser G, 1999. Estimating terrestrial NPP: what the data say and how they may be interpreted? Ecological Modelling, 117(2-3): 361–369. doi: 10.1016/ s0304-3800(99)00019-8CrossRefGoogle Scholar
  2. Barford C C, Wofsy S C, Goulden M L et al., 2001. Factors controlling long- and short-term sequestration of atmospheric C02 in a mid-latitude forest. Science, 294(5547): 1688–1691. doi: 10.1126/science.1062962CrossRefGoogle Scholar
  3. Beer C, Reichstein M, Tomelleri E et al., 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329(5993): 834–838. doi: 10.1126/science. 1184984CrossRefGoogle Scholar
  4. Bolin B, 1977. Changes of land biota and their importance for the carbon cycle. Science, 196(4290): 613–615. doi: 10.1126/ science. 196.4290.613CrossRefGoogle Scholar
  5. Chen L Y, Li H, Zhang P J et al., 2015. Climate and native grassland vegetation as drivers of the community structures of shrub-encroached grasslands in Inner Mongolia, China. Landscape Ecology, 30(9): 1627–1641. doi: 10.1007/sl0980-014-0044-9CrossRefGoogle Scholar
  6. Chen T, van der Werf G R, de Jeu R A M et al., 2013. A global analysis of the impact of drought on net primary productivity. Hydrology and Earth System Sciences, 17(10): 3885–3894. doi: 10.5194/hessd-10-2429-2013CrossRefGoogle Scholar
  7. Chen Y Z, Mu S J, Sun Z G et al, 2016. Grassland carbon sequestration ability in China: a new perspective from terrestrial aridity zones. Rangeland Ecology & Management, 69(1): 84–94. doi: 10.1016/j.rama.2015.09.003CrossRefGoogle Scholar
  8. Chen Y Z, Li J L, Ju W M et al., 2017. Quantitative assessments of water-use efficiency in Temperate Eurasian Steppe along an aridity gradient. PLoS One, 12(7): e0179875. doi: 10.1371/journal.pone.0179875Google Scholar
  9. Chen Zhenghua, Ma Qingyuan, Wang Jian et al., 2008. Estimation of Heihe Basin net primary productivity using the CASA model. Journal of Natural Resources, 23(4): 263–273. (in Chinese)Google Scholar
  10. DeLucia E H, Drake J E, Thomas R B et al., 2007. Forest carbon use efficiency: is respiration a constant fraction of gross primary production? Global Change Biology, 13(6): 1157–1167. doi: 10.1111/j.1365-2486.2007.01365.xCrossRefGoogle Scholar
  11. Dong J R, Kaufmann R K, Myneni R B et al., 2003. Remote sensing estimates of boreal and temperate forest woody bio-mass: carbon pools, sources, and sinks. Remote Sensing of Environment, 84(3): 393–410. doi: 10.1016/s0034-4257(02) 00130-xCrossRefGoogle Scholar
  12. Field C B, Randerson J T, Malmstrom C M, 1995. Global net primary production: combining ecology and remote sensing. Remote Sensing of Environment, 51(1): 74–88. doi: 10.1016/ 0034-4257(94)00066-vCrossRefGoogle Scholar
  13. Gang C, Zhou W, Wang Z et al., 2015. Comparative assessment of grassland NPP dynamics in response to climate change in China, North America, Europe and Australia from 1981 to 2010. Journal of Agronomy and Crop Science, 201(1): 57–68. doi: 10.1111/jac.l2088CrossRefGoogle Scholar
  14. Gang C, Wang Z, Zhou W et al., 2016b. Assessing the spatiotem-poral dynamic of global grassland water use efficiency in response to climate change from 2000 to 2013. Journal of Agronomy and Crop Science, 202(5): 343–354. doi: 10.1111/ jac.12137CrossRefGoogle Scholar
  15. Gang C C, Wang Z Q, Chen Y Z et al., 2016a. Drought-induced dynamics of carbon and water use efficiency of global grasslands from 2000 to 2011. Ecological Indicators, 67: 788–797. doi: 10.1016/j.ecolind.2016.03.049CrossRefGoogle Scholar
  16. Gang C C, Zhao W, Zhao T et al., 2018. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China. Science of the Total Environment, 645: 827–836. doi: 10.1016/j.scitotenv.2018.07.161CrossRefGoogle Scholar
  17. Gao Q Z, Schwartz M W, Zhu W Q et al, 2016. Changes in global grassland productivity during 1982 to 2011 attributable to climatic factors. Remote Sensing, 8(5): 384. doi: 10.3390/ rs8050384CrossRefGoogle Scholar
  18. Grace J, Jose J S, Meir P et al., 2006. Productivity and carbon fluxes of tropical savannas. Journal of Biogeography, 33(3): 387–400. doi: 10.1111/j.1365-2699.2005.01448.xCrossRefGoogle Scholar
  19. Hicke J A, Asner G P, Randerson J T et al., 2002. Trends in North American net primary productivity derived from satellite observations, 1982-1998. Global Biogeochemical Cycles, 16(2): 2-1-2-14. doi: 10.1029/2001gb001550Google Scholar
  20. Hilker T, Lyapustin A I, Tucker C J et al., 2014. Vegetation dynamics and rainfall sensitivity of the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 111(45): 16041–16046. doi: 10.1073/pnas. 1404870111CrossRefGoogle Scholar
  21. Joos F, Prentice I C, Sitch S et al., 2001. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) Emission Scenarios. Global Biogeochemical Cycles, 15(4): 891–907. doi: 10.1029/ 2000gb001375CrossRefGoogle Scholar
  22. Keenan T F, Baker I, Barr A et al., 2012. Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange. Global Change Biology, 18(6): 1971–1987. doi: 10.1111/j.l365-2486.2012.02678.xCrossRefGoogle Scholar
  23. Khalifa M, Elagib N A, Ribbe L et al, 2018. Spatio-temporal variations in climate, primary productivity and efficiency of water and carbon use of the land cover types in Sudan and Ethiopia. Science of the Total Environment, 624: 790–806. doi: 10.1016/j.scitotenv.2017.12.090CrossRefGoogle Scholar
  24. Knutson T R, Delworth T L, Dixon K W et al, 1999. Model assessment of regional surface temperature trends (1949-1997). Journal of Geophysical Research: Atmospheres, 104(D24): 30981–30996. doi: 10.1029/1999jd900965CrossRefGoogle Scholar
  25. Liang W, Yang Y T, Fan D M et al., 2015. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agricultural and Forest Meteorology, 204: 22–36. doi: 10.1016/j.agrformet.2015.01. 015CrossRefGoogle Scholar
  26. Lieth H, 1975. Modeling the primary productivity of the world. In: Lieth H, Whittaker R H (eds). Primary Productivity of the Biosphere. Berlin, Heidelberg: Springer, 237–263. doi: 10.1007/978-3-642-80913-2J2CrossRefGoogle Scholar
  27. Lin X H, Han P F, Zhang W et al., 2017. Sensitivity of alpine grassland carbon balance to interannual variability in climate and atmospheric CO2 on the Tibetan Plateau during the last century. Global and Planetary Change, 154: 23–32. doi: 10.1016/j.gloplacha.2017.05.008CrossRefGoogle Scholar
  28. Ling H, He B, Chen A F et al., 2016. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Scientific Reports, 6: 24639. doi: 10.1038/srep24639CrossRefGoogle Scholar
  29. Liu J, Chen J M, Cihlar J et al., 2002. Net primary productivity mapped for Canada at 1-km resolution. Global Ecology and Biogeography, 11(2): 115–129. doi: 10.1046/j.l466-822x. 2002.00278.xCrossRefGoogle Scholar
  30. Liu Y Y, Wang Q, Zhang Z Y et al., 2019a. Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Science of the Total Environment, 690: 27–39. doi: 10.1016/j.scitotenv.2019.06.503CrossRefGoogle Scholar
  31. Liu Y Y, Yang Y, Wang Q et al., 2019b. Evaluating the responses of net primary productivity and carbon use efficiency of global grassland to climate variability along an aridity gradient. Science of the Total Environment, 652: 671–682. doi: 10.1016/ j.scitotenv.2018.10.295CrossRefGoogle Scholar
  32. Liu Y Y, Zhang Z Y, Tong L J et al., 2019c. Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe. Ecological Indicators, 106: 105504. doi: 10.1016/j.ecolind.2019.105504CrossRefGoogle Scholar
  33. Mao D H, Wang Z M, Li L et al., 2014. Spatiotemporal dynamics of grassland aboveground net primary productivity and its association with climatic pattern and changes in Northern China. Ecological Indicators, 41: 40–48. doi: 10.1016/j.ecolind.2014. 01.020CrossRefGoogle Scholar
  34. Melillo J M, McGuire A D, Kicklighter D W et al, 1993. Global climate change and terrestrial net primary production. Nature, 363(6426): 234–240. doi: 10.1038/363234a0CrossRefGoogle Scholar
  35. Nemani R R, Keeling C D, Hashimoto H et al., 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625): 1560–1563. doi: 10.1126/science. 1082750CrossRefGoogle Scholar
  36. Potter C, Klooster S, Genovese V, 2012. Net primary production of terrestrial ecosystems from 2000 to 2009. Climatic Change, 115(2): 365–378. doi: 10.1007/sl0584-012-0460-2CrossRefGoogle Scholar
  37. Potter C S, Randerson J T, Field C B et al., 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem. Cycles, 7: 811–841.CrossRefGoogle Scholar
  38. Raich J W, Rastetter E B, Melillo J M et al., 1991. Potential net primary productivity in South America: application of a global model. Ecological Applications, 1(4): 399–429. doi: 10.2307/ 1941899CrossRefGoogle Scholar
  39. Schimel D S, House J I, Hibbard K A et al., 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414(6860): 169–172. doi: 10.1038/35102500CrossRefGoogle Scholar
  40. Scurlock J M O, Johnson K, Olson R J, 2002. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology, 8(8): 736–753. doi: 10.1046/j.1365-2486.2002.00512.xCrossRefGoogle Scholar
  41. Toms J D, Lesperance M L, 2003. Piecewise regression: a tool for identifying ecological thresholds. Ecology, 84(8): 2034–2041. doi: 10.1890/02-0472CrossRefGoogle Scholar
  42. Uchijima Z, Seino H, 1985. Agroclimatic Evaluation of net primary productivity of natural vegetations: (1) chikugo model for evaluating net primary productivity. Journal of Agricultural Meteorology, 40(4): 343–352. doi: 10.2480/agrmet.40.343CrossRefGoogle Scholar
  43. Xia J Z, Liu S G, Liang S L et al., 2014. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sensing, 6(3): 1783–1802. doi: 10.3390/rs6031783CrossRefGoogle Scholar
  44. Xing Xiaoxu, Xu Xingliang, Zhang Xianzhou et al., 2010. Simulating net primary production of grasslands in northeastern Asia using MODIS data from 2000 to 2005. Journal of Geographical Sciences, 20(2): 193–204. doi: 10.1007/s11442-010-0193-yCrossRefGoogle Scholar
  45. Xu H J, Wang X P, Zhang X X, 2016. Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012. Ecological Engineering, 92: 251–259. doi: 10.1016/j.ecoleng.2016.04.005CrossRefGoogle Scholar
  46. Yang Y, Wang Z Q, Li J L et al., 2017. Assessing the spatiotem-poral dynamic of global grassland carbon use efficiency in response to climate change from 2000 to 2013. Acta Oecologica, 81: 22–31. doi: 10.1016/j.actao.2017.04.004CrossRefGoogle Scholar
  47. Yang Y H, Fang J Y, Ma W H et al, 2008. Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophysical Research Letters, 35(23): L23710. doi: 10.1029/2008gl035408Google Scholar
  48. Zeng B, Yang T B, 2008. Impacts of climate warming on vegetation in Qaidam Area from 1990 to 2003. Environmental Monitoring and Assessment, 144(1-3): 403–117. doi: 10.1007/s10661-007-0003-xGoogle Scholar
  49. Zhang Y, Zhang C B, Wang Z Q et al., 2016. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Science of the Total Environment, 563–564: 210–220. doi: 10.1016/j.scitotenv.2016.03.223Google Scholar
  50. Zhao M S, Running S W, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994): 940–943. doi: 10.1126/science. 1192666CrossRefGoogle Scholar
  51. Zheng Zhong, Qi Yuan, Pan Xiaoduo et al., 2013. Estimating the grassland NPP in Qinghai Lake Basin based on WRF model data and CASA model. Journal of Glaciology and Geocryology, 35(2): 465–474. (in Chinese)Google Scholar
  52. Zhou W, Yang H, Huang L et al., 2017. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecological Indicators, 83: 303–313. doi: 10.1016/j.ecolind.2017.08.019CrossRefGoogle Scholar
  53. Zhou W, Yang H, Zhou L et al., 2018. Dynamics of grassland carbon sequestration and its coupling relation with hydrother-mal factor of Inner Mongolia. Ecological Indicators, 95: 1–11. doi: 10.1016/j.ecolind.2018.07.008CrossRefGoogle Scholar

Copyright information

© Science Press, Northeast Institute of Geography and Agroecology, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yangyang Liu
    • 1
  • Yue Yang
    • 2
  • Qian Wang
    • 1
  • Muhammad Khalifa
    • 3
    • 4
  • Zhaoying Zhang
    • 5
  • Linjing Tong
    • 1
  • Jianlong Li
    • 1
    Email author
  • Aiping Shi
    • 6
    Email author
  1. 1.Department of Ecology, School of Life ScienceNanjing UniversityNanjingChina
  2. 2.Nanjing Institute of Environmental SciencesMinistry of Environmental Protection of the People’s Republic of ChinaNanjingChina
  3. 3.Institute for Technology and Resources Management in the Tropics and Subtropics (ITT)Technische Hochschule Köln-Cologne University of Applied SciencesCologneGermany
  4. 4.Department of GeographyUniversity of CologneCologneGermany
  5. 5.International Institute for Earth System Sciences, Jiangsu Provincial Key Laboratory of Geographic Information Science and TechnologyNanjing UniversityNanjingChina
  6. 6.School of Agricultural Equipment EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations