Advertisement

Chinese Geographical Science

, Volume 29, Issue 1, pp 166–180 | Cite as

Comparative Analysis of Fractional Vegetation Cover Estimation Based on Multi-sensor Data in a Semi-arid Sandy Area

  • Qiuyu Liu
  • Tinglong Zhang
  • Yizhe Li
  • Ying Li
  • Chongfeng Bu
  • Qingfeng Zhang
Article
  • 36 Downloads

Abstract

The estimation of fractional vegetation cover (FVC) is important for identifying and monitoring desertification, especially in arid and semiarid regions. By using regression and pixel dichotomy models, we present the comparison of Sentinel-2A (S2) multispectral instrument (MSI) and Landsat 8 (L8) operational land imager (OLI) data regarding the retrieval of FVC in a semi-arid sandy area (Mu Us Sandland, China, in August 2016). A combination of unmanned aerial vehicle (UAV) high-spatial-resolution images and field plots were used to produce verified data. Based on a normalized difference vegetation index (NDVI) regression model, the results showed that, compared with that of L8, the coefficient of determination (R2) of S2 increased by 26.0%, and the root mean square error (RMSE) and the sum of absolute error (SAE) decreased by 3.0% and 11.4%, respectively. For the ratio vegetation index (RVI) regression model, compared with that of L8, the R2 of S2 increased by 26.0%, and the RMSE and SAE decreased by 8.0% and 20.0%, respectively. When the pixel dichotomy model was used, compared with that of L8, the RMSE of S2 decreased by 21.3%, and the SAE decreased by 26.9%. Overall, S2 performed better than L8 in terms of FVC inversion. Additionally, in this paper, we develop a verified scheme based on UAV data in combination with the object-based classification method. This scheme is feasible and sufficiently robust for building relationships between field data and inversion results from satellite data. Further, the synergy of multi-source sensors (especially UAVs and satellites) is a potential effective way to estimate and evaluate regional ecological environmental parameters (FVC).

Keywords

fractional vegetation cover (FVC) Sentinel-2A (S2) unmanned aerial vehicle (UAV) image pixel dichotomy model regression model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barati S, Rayegani B, Saati M et al., 2011. Comparison the accuracies of different spectral indices for estimation of vegetation cover fraction in sparse vegetated areas. The Egyptian Journal of Remote Sensing and Space Science, 14(1): 49–56. doi: 10.1016/j.ejrs.2011.06.001CrossRefGoogle Scholar
  2. Bi Kaiyi, Niu Zheng, Huang Ni et al., 2017. Identifying vegetation with decision tree model based on object-oriented method using multi-temporal sentinel-2A images. Geography and Geo-Information Science, 33(5): 16–20. (in Chinese)Google Scholar
  3. Buyantuyev A, Wu J, Gries C, 2007. Estimating vegetation cover in an urban environment based on Landsat ETM+ imagery: a case study in Phoenix, USA. International Journal of Remote Sensing, 28(2): 269–291. doi: 10.1080/01431160600658149CrossRefGoogle Scholar
  4. Chen Y, Gillieson D, 2009. Evaluation of Landsat TM vegetation indices for estimating vegetation cover on semi-arid rangelands: a case study from Australia. Canadian Journal of Remote Sensing, 35(5): 435–446. doi: 10.5589/m09-037CrossRefGoogle Scholar
  5. Chen Z, CHEN W E, Leblanc S G et al., 2010. Digital photograph analysis for measuring percent plant cover in the Arctic. Arctic, 63(3): 315–326. doi: 10.14430/arctic1495CrossRefGoogle Scholar
  6. Cheng Zhigang, Yang Xinyue, Dong Siyan et al., 2016. Vegetation coverage changes in chengdu based on DMSP/OLS and SPOT-VEG NDVI. Advances in Meteorological Science & Technology, 6(1): 14–20. (in Chinese)Google Scholar
  7. Curran P J, Williamson H D, 1986. Sample size for ground and remotely sensed data. Remote Sensing of Environment, 20 (1): 31–41. doi: 10.1016/0034-4257(86)90012-XCrossRefGoogle Scholar
  8. Fernández-Manso A, Fernández-Manso O, Quintano C, 2016. Sentinel-2A Red-edge spectral indices suitability for discriminating burn severity. International Journal of Applied Earth Observation and Geoinformation, 50: 170–175. doi: 10.1016/j.jag.2016.03.005CrossRefGoogle Scholar
  9. Frampton W J, Dash J, Watmough G et al., 2013. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82: 83–92. doi: 10.1016/j.isprsjprs.2013.04.007CrossRefGoogle Scholar
  10. Gago J, Douthe C, Coopman R et al., 2015. UAVs challenge to assess water stress for sustainable agriculture. Agricultural Water Management, 153: 9–19. doi: 10.1016/j.agwat.2015.01.020CrossRefGoogle Scholar
  11. Gao Lei, Lu gang, 2016. Estimating vegetation coverage of Nanjing Jiangbei district based on the GF-1 data. Journal of Anhui Agricultural Sciences, 44(10): 246–248. (in Chinese)Google Scholar
  12. Godínez-Alvarez H, Herrick J, Mattocks M et al., 2009. Comparison of three vegetation monitoring methods: their relative utility for ecological assessment and monitoring. Ecological indicators, 9(5): 1001–1008. doi: 10.1016/j.ecolind.2008.11.011CrossRefGoogle Scholar
  13. Graetz R, Pech R P, Davis A, 1988. The assessment and monitoring of sparsely vegetated rangelands using calibrated Landsat data. International Journal of Remote Sensing, 9(7): 1201–1222. doi: 10.1080/01431168808954929CrossRefGoogle Scholar
  14. Gutman G, Ignatov A, 1998. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. International Journal of Remote Sensing, 19(8): 1533–1543. doi: 10.1080/014311698215333CrossRefGoogle Scholar
  15. Hamedianfar A, Shafri H Z M, Mansor S et al., 2014. Improving detailed rule-based feature extraction of urban areas from WorldView-2 image and lidar data. International Journal of Remote Sensing, 35(5): 1876–1899. doi: 10.1080/01431161.2013.879350CrossRefGoogle Scholar
  16. Huete A R, 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3): 295–309. doi: 10.1016/0034-4257(88)90106-XCrossRefGoogle Scholar
  17. Jakubauskas M, Kindscher K, Fraser A et al., 2000. Close-rangeremote sensing of aquatic macrophyte vegetation cover. International Journal of Remote Sensing, 21(18): 3533–3538. doi: 10.1080/014311600750037543CrossRefGoogle Scholar
  18. Jesús D, Jochem V, Luis A et al., 2011. Evaluation of Sentinel-2 Red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 11(7): 7063–7081. doi: 10.3390/s110707063CrossRefGoogle Scholar
  19. Jia K, Liang S, Gu X et al., 2016. Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data. Remote Sensing of Environment, 177: 184–191. doi: 10.1016/j.rse.2016.02.019CrossRefGoogle Scholar
  20. Jiang X, Wang D, Tang L et al., 2008. Analysing the vegetation cover variation of China from AVHRR-NDVI data. International Journal of Remote Sensing, 29(17–18): 5301–5311. doi: 10.1080/01431160802036466CrossRefGoogle Scholar
  21. Jiapaer G, Chen X, Bao A, 2011. A comparison of methods for estimating fractional vegetation cover in arid regions. Agricultural and Forest Meteorology, 151(12): 1698–1710. doi: 10.1016/j.agrformet.2011.07.004CrossRefGoogle Scholar
  22. Ju C, Cai T, Yang X, 2008. Topography-based modeling to estimate percent vegetation cover in semi-arid Mu Us sandy land, China. Computers and electronics in agriculture, 64(2): 133–139. doi: 10.1016/j.compag.2008.04.008CrossRefGoogle Scholar
  23. Kaufman Y J, Tanre D, 1992. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE transactions on Geoscience and Remote Sensing, 30(2): 261–270. doi: 10.1109/36.134076CrossRefGoogle Scholar
  24. Kobayashi T, Liao R T, and Li S Q, 1995. Ecophysiological behavior of Artemisia ordosica on the process of sand dune fixation. Ecological Research, 10(3): 339–349. doi: 10.1007/BF02347860CrossRefGoogle Scholar
  25. Lehner A, Steinnocher K, 2017. Mapping population distribution in urban areas: using sentinel-2A in comparison with Landsat 8. Journal for Geographic Information Science, 1: 93–105. doi: 10.1553/giscience2017_01_s93Google Scholar
  26. Leprieur C, Kerr Y, Mastorchio S et al., 2000. Monitoring vegetation cover across semi-arid regions: comparison of remote observations from various scales. International Journal of Remote Sensing, 21(2): 281–300. doi: 10.1080/014311600210830CrossRefGoogle Scholar
  27. Li Xiaosong, Li Zengyuan, Gao Zhihai et al., 2010. Estimation of sparse vegetation cover in arid regions based on vegetation indices derived from hyperion data. Journal of Beijing Forestry University, 32(3): 95–100. (in Chinese)Google Scholar
  28. Nemani R R, Running S W, Pielke R A et al., 1996. Global vegetation cover changes from coarse resolution satellite data. Journal of Geophysical Research: Atmospheres, 101: 7157–7162. doi: 10.1029/95JD02138CrossRefGoogle Scholar
  29. Novelli A, Aguilar M A, Nemmaoui A et al., 2016. Performance evaluation of object based greenhouse detection from Sentinel- 2 MSI and Landsat 8 OLI data: a case study from Almería (Spain). International Journal of Applied Earth Observation and Geoinformation, 52: 403–411. doi: 10.1016/j.jag.2016.07.011CrossRefGoogle Scholar
  30. Sivakumar M, 2007. Interactions between climate and desertification. Agricultural and Forest Meteorology, 142(2): 143–155. doi: 10.1016/j.agrformet.2006.03.025CrossRefGoogle Scholar
  31. Souza A A, Galvão L S, Santos J R, 2010. Relationships between hyperion-derived vegetation indices, biophysical parameters, and elevation data in a Brazilian savannah environment. Remote Sensing Letters, 1(1): 55–64. doi: 10.1080/01431160903329364CrossRefGoogle Scholar
  32. Tømmervik H, Høgda K A, Solheim I, 2003. Monitoring vegetation changes in Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) using multitemporal Landsat MSS/TM data. Remote Sensing of Environment, 85(3): 370–388. doi: 10.1016/S0034-4257(03)00014-2CrossRefGoogle Scholar
  33. Van de Voorde T, Vlaeminck J, Canters F, 2008. Comparing different approaches for mapping urban vegetation cover from Landsat ETM+ data: a case study on Brussels. Sensors, 8(6): 3880–3902. doi: 10.3390/s8063880CrossRefGoogle Scholar
  34. Verstraete M M, Schwartz S, 1991. Desertification and global change. Vegetatio, 91(1–2): 3–13. doi: 10.1007/BF00036043CrossRefGoogle Scholar
  35. Wang Xinyun, Guo Yige, 2013. Estimation of vegetation coverage using hyperion image. Journal of Yangtze River Scientific Research Institute, 30(7): 106–1007. (in Chinese)Google Scholar
  36. White M A, Asner G P, Nemani R R et al., 2000. Measuring fractional cover and leaf area index in arid ecosystems: digital camera, radiation transmittance, and laser altimetry methods. Remote Sensing of Environment, 74(1): 45–57. doi: 10.1016/S0034-4257(00)00119-XCrossRefGoogle Scholar
  37. Wu D, Wu H, Zhao X et al., 2014. Evaluation of spatiotemporal variations of global fractional vegetation cover based on GIMMS NDVI data from 1982 to 2011. Remote Sensing, 6(5): 4217–4239. doi: 10.3390/rs6054217CrossRefGoogle Scholar
  38. Yu F, Dong M, Krüsi B, 2004. Clonal integration helps Psammochloa villosa survive sand burial in an inland dune. New Phytologist, 162(3): 697–704. doi: 10.1111/j.1469-8137.2004.01073.xCrossRefGoogle Scholar
  39. Zarco-Tejada P J, Diaz-Varela R, Angileri V et al., 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 55: 89–99. doi: 10.1016/j.eja.2014.01.004CrossRefGoogle Scholar
  40. Zeng X, Rao P, DeFries R S et al., 2003. Interannual variability and decadal trend of global fractional vegetation cover from 1982 to 2000. Journal of Applied Meteorology, 42(10): 1525–1530. doi:10.1175/1520-0450(2003)042<1525:IVADTO>2.0.CO;2CrossRefGoogle Scholar
  41. Zhang N, Zhao J, Zhang L, 2016. Comparison and evaluation on image fusion methods for GaoFen-1 imagery. Proceedings of the Spie, 157: 101571V. doi: 10.1117/12.2246695Google Scholar
  42. Zhang X, Liao C, Li J et al., 2013. Fractional vegetation cover estimation in arid and semi-arid environments using HJ-1 satellite hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 21: 506–512. doi: 10.1016/j.jag.2012.07.003CrossRefGoogle Scholar
  43. Zhang Z, Zhang H, Chang Y et al., 2015. Review of radiometric calibration methods of Landsat series optical remote sensors. Journal of Remote Sensing, 19(5): 719. doi: 10.11834/jrs.20154240Google Scholar
  44. Zhou Z, Shangguan Z, Zhao D, 2006. Modeling vegetation coverage and soil erosion in the Loess Plateau Area of China. Ecological Modelling, 198(1): 263–268. doi: 10.1016/j.ecolmodel.2006.04.019CrossRefGoogle Scholar
  45. Zhou Z, Yang Y, Chen B, 2017. Estimating Spartina alterniflora fractional vegetation cover and aboveground biomass in a coastal wetland using SPOT6 satellite and UAV data. Aquatic Botany, 144: 38–45. doi: 10.1016/j.aquabot.2017.10.004CrossRefGoogle Scholar
  46. Zhu Lei, Xu Junfeng, Huang Jingfeng et al., 2008. Study on hyperspectral estimation model of crop vegetation cover percentage. Spectroscopy and Spectral Analysis, 28(8): 1827–1831. (in Chinese)Google Scholar
  47. Zribi M, Dridi G, Amri R et al., 2016. Analysis of the effects of drought on vegetation cover in a mediterranean region through the use of SPOT-VGT and TERRA-MODIS long time series. Remote Sensing, 8(12): 992. doi: 10.3390/rs8120992CrossRefGoogle Scholar

Copyright information

© Science Press, Northeast Institute of Geography and Agricultural Ecology, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Natural Resources and EnvironmentNorthwest A&F UniversityYangling ShaanxiChina
  2. 2.Institute of Soil and Water ConservationChinese Academy of Sciences and Ministry of Water ResourcesYanglingChina

Personalised recommendations