Advertisement

Chinese Geographical Science

, Volume 28, Issue 6, pp 1048–1060 | Cite as

Relationship Between Urban Road Traffic Characteristics and Road Grade Based on a Time Series Clustering Model: A Case Study in Nanjing, China

  • Jiechen Wang
  • Jiayi Wu
  • Jianhua Ni
  • Jie Chen
  • Changbai Xi
Article
  • 35 Downloads

Abstract

With the increasing number of vehicles in large- and medium-sized cities challenges in urban traffic management, control, and road planning are being faced. Taxi GPS trajectory data is a novel data source that can be used to study the potential dynamic traffic characteristics of urban roads, and thus identify locations that show a notable lack of road planning. Considering that road traffic characteristics on their own are insufficient for a comprehensive understanding of urban traffic, we develop a road traffic characteristic time series clustering model to analyze the relationship between urban road traffic characteristics and road grade based on existing taxi trajectory data. We select the main urban area of Nanjing as our study area and use the taxi trajectory data of a single month for evaluating our method. The experiments show that the clustering model exhibit good performance and can be successfully used for road traffic characteristic classification. Moreover, we analyze the correlation between traffic characteristics and road grade to identify road segments with planning designs that do not match the actual traffic demands.

Keywords

time series clustering temporal characteristics of road speed taxi trajectory data urban computation machine-learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balasubramaniyan R, Hüllermeier E, Weskamp N et al., 2005. Clustering of gene expression data using a local shape-based similarity measure. Bioinformatics, 21(7): 1069–1077. doi:  https://doi.org/10.1093/bioinformatics/bti095 CrossRefGoogle Scholar
  2. Chen J, Shaw S L, Yu H B et al., 2011. Exploratory data analysis of activity diary data: a space–time GIS approach. Journal of Transport Geography, 19(3): 394–404. doi:  https://doi.org/10.1016/j.jtrangeo.2010.11.002 CrossRefGoogle Scholar
  3. Cui J X, Liu F, Janssens D et al., 2016. Detecting urban road network accessibility problems using taxi GPS data. Journal of Transport Geography, 51: 147–157. doi:  https://doi.org/10.1016/j.jtrangeo.2015.12.007 CrossRefGoogle Scholar
  4. Ding C, He X F, 2004. Cluster structure of K-means clustering via principal component analysis. In: Dai H H, Srikant R, Zhang C Q (eds). Advances in Knowledge Discovery and Data Mining. Berlin, Heidelberg: Springer, 414–418. doi:  https://doi.org/10.1007/978-3-540-24775-3_50 CrossRefGoogle Scholar
  5. Filho R H, Maia J E B, 2010. Network traffic prediction using PCA and K-means. In: Proceedings of 2010 Network Operations and Management Symposium. Osaka, Japan: IEEE, 938–941. doi:  https://doi.org/10.1109/NOMS.2010.5488338 Google Scholar
  6. Ghosh-Dastidar S, Adeli H, 2006. Neural network-wavelet microsimulation model for delay and queue length estimation at freeway work zones. Journal of Transportation Engineering, 132(4): 331–341. doi:  https://doi.org/10.1061/(ASCE)0733-947X(2006)132:4(331) CrossRefGoogle Scholar
  7. Kim J, Krishnapuram R, Davé R, 1996. Application of the least trimmed squares technique to prototype-based clustering. Pattern Recognition Letters, 17(6): 633–641. doi:  https://doi.org/10.1016/0167-8655(96)00028-1 CrossRefGoogle Scholar
  8. Košmelj K, Batagelj V, 1990. Cross-sectional approach for clustering time varying data. Journal of Classification, 7(1): 99–109. doi:  https://doi.org/10.1007/BF01889706 CrossRefGoogle Scholar
  9. Lee J, Hao Q, Jia Y H et al., 2009. Continuous traffic flow dependency analysis of urban periphery freeway consecutive section base on principle component analysis. In: Proceedings of 2nd International Conference on Intelligent Computation Technology and Automation. Changsha, Hunan, China: IEEE, 533–536. doi:  https://doi.org/10.1109/ICICTA.2009.594 Google Scholar
  10. Liao T W, 2005. Clustering of time series data—a survey. Pattern Recognition, 38(11): 1857–1874. doi:  https://doi.org/10.1016/j.patcog.2005.01.025 CrossRefGoogle Scholar
  11. Lippi M, Bertini M, Frasconi P, 2013. Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning. IEEE Transactions on Intelligent Transportation Systems, 14(2): 871–882. doi:  https://doi.org/10.1109/TITS.2013.2247040 CrossRefGoogle Scholar
  12. Liu K, Yamamoto T, Morikawa T, 2009. Feasibility of using taxi dispatch system as probes for collecting traffic information. Journal of Intelligent Transportation Systems, 13(1): 16–27. doi:  https://doi.org/10.1080/15472450802644447 CrossRefGoogle Scholar
  13. Liu X, Gong L, Gong Y X et al., 2015. Revealing travel patterns and city structure with taxi trip data. Journal of Transport Geography, 43: 78–90. doi:  https://doi.org/10.1016/j.jtrangeo.2015.01.016 CrossRefGoogle Scholar
  14. Liu Y, Wang F H, Xiao Y et al., 2012. Urban land uses and traffic ‘source-sink areas’: evidence from GPS-enabled taxi data in Shanghai. Landscape and Urban Planning, 106(1): 73–87. doi:  https://doi.org/10.1016/j.landurbplan.2012.02.012 CrossRefGoogle Scholar
  15. Qi G D, Li X L, Li S J et al., 2011. Measuring social functions of city regions from large-scale taxi behaviors. In: Proceedings of 2011 IEEE International Conference on Pervasive Computing and Communications Workshops. Seattle, WA, USA: IEEE, 384–388. doi:  https://doi.org/10.1109/PERCOMW.2011.5766912 Google Scholar
  16. Quddus M A, Ochieng W Y, Noland R B, 2007. Current map-matching algorithms for transport applications: stateof-the art and future research directions. Transportation Research Part C: Emerging Technologies, 15(5): 312–328. doi:  https://doi.org/10.1016/j.trc.2007.05.002 CrossRefGoogle Scholar
  17. Serrano-Cinca C, Fuertes-Callén Y, Mar-Molinero C, 2005. Measuring DEA efficiency in internet companies. Decision Support Systems, 38(4): 557–573. doi:  https://doi.org/10.1016/j.dss.2003.08.004 CrossRefGoogle Scholar
  18. Stathopoulos A, Karlaftis M G, 2001. Spectral and cross-spectral analysis of urban traffic flows. In: Proceedings of 2001 IEEE Intelligent Transportation Systems. Oakland, CA, USA: IEEE, 820–825. doi:  https://doi.org/10.1109/ITSC.2001.948766 Google Scholar
  19. Toplak W, Koller H, Dragaschnig M et al., 2010. Novel road classifications for large scale traffic networks. In: Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems. Funchal, Portugal: IEEE, 1264–1270. doi:  https://doi.org/10.1109/ITSC.2010.5625182 CrossRefGoogle Scholar
  20. Townshend J R G, Justice C O, Kalb V, 1987. Characterization and classification of South American land cover types using satellite data. International Journal of Remote Sensing, 8(8): 1189–1207. doi:  https://doi.org/10.1080/01431168708954764 CrossRefGoogle Scholar
  21. Vlahogianni E I, Geroliminis N, Skabardonis A, 2008. Empirical and analytical investigation of traffic flow regimes and transitions in signalized arterials. Journal of Transportation Engineering, 134(12): 512–522. doi:  https://doi.org/10.1061/(ASCE)0733-947X(2008)134:12(512) CrossRefGoogle Scholar
  22. Vlahogianni E I, Karlaftis M G, 2012. Comparing traffic flow time-series under fine and adverse weather conditions using recurrence-based complexity measures. Nonlinear Dynamics, 69(4): 1949–1963. doi:  https://doi.org/10.1007/s11071-012-0399-x CrossRefGoogle Scholar
  23. Zhan X Y, Hasan S, Ukkusuri S V et al., 2013. Urban link travel time estimation using large-scale taxi data with partial information. Transportation Research Part C: Emerging Technologies, 33: 37–49. doi:  https://doi.org/10.1016/j.trc.2013.04.001 CrossRefGoogle Scholar
  24. Zhang W, Xu J M, Wang H F, 2007a. Urban traffic situation calculation methods based on probe vehicle data. Journal of Transportation Systems Engineering and Information Technology, 7(1): 43–48. doi:  https://doi.org/10.1016/S1570-6672(07)60007-5 CrossRefGoogle Scholar
  25. Zhang Wei, Xu Jianmin, Lin Mianfeng, 2007b. Map matching algorithm of large scale probe vehicle data. Journal of Transportation Systems Engineering and Information Technology, 7(2): 39–45. (in Chinese)Google Scholar
  26. Zhang Xirui, Fang Zhixiang, Li Qingquan et al., 2015. A spatio- temporal analysis on the heterogeneous distribution of urban road network capacity based on floating car data. Journal of Geo-Information Science, 17(3): 336–343. (in Chinese)Google Scholar
  27. Zhuang L J, Gong J F, He Z C et al., 2012. Framework of experienced route planning based on taxis’ GPS data. In: Proceedings of the 15th International IEEE Conference on Intelligent Transportation Systems. Anchorage, AK, USA: IEEE, 1026–1031. doi:  https://doi.org/10.1109/ITSC.2012.6338867 Google Scholar

Copyright information

© Science Press, Northeast Institute of Geography and Agricultural Ecology, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jiechen Wang
    • 1
    • 2
    • 3
  • Jiayi Wu
    • 1
  • Jianhua Ni
    • 1
  • Jie Chen
    • 1
  • Changbai Xi
    • 1
  1. 1.Department of Geographic Information ScienceNanjing UniversityNanjingChina
  2. 2.Jiangsu Provincial Key Laboratory of Geographic Information Science and TechnologyNanjingChina
  3. 3.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and ApplicationNanjingChina

Personalised recommendations