Advertisement

Chinese Geographical Science

, Volume 28, Issue 4, pp 717–726 | Cite as

Cultivation Ages Effect on Soil Physicochemical Properties and Heavy Metal Accumulation in Greenhouse Soils

  • Jun Wang
  • Wenkui Mi
  • Peipei Song
  • Hui Xie
  • Lusheng Zhu
  • Jinhua Wang
Article
  • 9 Downloads

Abstract

The intensive management practices in greenhouse production may alter the soil physicochemical properties and contribute to the accumulation of heavy metals (HMs). To determine the HM concentrations in vegetable soil in relation to soil physicochemical properties and cultivation age, we conducted a soil survey for typical greenhouse soils in Shouguang, China. The results indicated that Cd is a major HM pollutant in the tested soils, as the only HM element exceeding the allowed limit for vegetable soil. The surveyed data was analyzed with regression analysis, correlation analysis and canonical correspondence analysis (CCA). A positive correlation is observed between HM pollution level and cultivation age. CCA results suggest that the HM pollution level and distribution in soil are significantly affected by soil physicochemical properties, which was a function of years of cultivation as revealed by regression analysis. In summary, cultivation age is an important factor to affect soil physicochemical properties (organic matter and inorganic nutrients) as well as HM contamination.

Keywords

heavy metal greenhouse soil cultivation age physicochemical property canonical correspondence analysis (CCA) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baaru M W, Mungendi D N, Bationo A et al., 2007. Soil microbial biomass carbon and nitrogen as influenced by organic and inorganic inputs at Kabete, Kenya. In: Bationo A et al. (eds.). Advances in Integrated Soil Fertility Management in sub-Saharan Africa: Challenges and Opportunities. Dordrecht: Springer Netherlands, 827–832.CrossRefGoogle Scholar
  2. Bai L Y, Zeng X B, Li L F et al., 2010. Effects of land use on heavy metal accumulation in soils and sources analysis. Agricultural Sciences in China, 9(11): 1650–1658. doi: 10.1016/S1671-2927(09)60262-5CrossRefGoogle Scholar
  3. Banks M K, Schwab A P, Henderson C, 2006. Leaching and reduction of chromium in soil as affected by soil organic content and plants. Chemosphere, 62(2): 255–264. doi: 10.1016/j.chemosphere.2005.05.020CrossRefGoogle Scholar
  4. Bradl H B, 2004. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid amp; Interface Science, 277(1): 1–18. doi: 10.1016/j.jcis.2004.04.005CrossRefGoogle Scholar
  5. Cambier P, Pot V, Mercier V et al., 2014. Impact of long-term organic residue recycling in agriculture on soil solution composition and trace metal leaching in soils. Science of The Total Environment, 499: 560–573. doi: 10.1016/j.scitotenv.2014.06.105CrossRefGoogle Scholar
  6. Cao H, Chen J, Zhang J et al., 2010. Heavy metals in rice and garden vegetables and their potential health risks to inhabitants in the vicinity of an industrial zone in Jiangsu, China. Journal of Environmental Sciences, 22(11): 1792–1799. doi: 10. 1016/S1001-0742(09)60321-1CrossRefGoogle Scholar
  7. Chuan M C, Shu G Y, Liu J C, 1996. Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. Water, Air, and Soil Pollution, 90(3–4): 543–556. doi: 10.1007/BF00282668CrossRefGoogle Scholar
  8. Cristaldi A, Conti G O, Jho E H et al., 2017. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology amp; Innovation, 8: 309–326. doi: 10.1016/j.eti.2017.08.002CrossRefGoogle Scholar
  9. Diagboya P N, Oluowolabi B I, Adebowale K O, 2015. Effects of time, soil organic matter, and iron oxides on the relative retention and redistribution of lead, cadmium, and copper on soils. Environmental Science and Pollution Research, 22(13): 10331–10339. doi: 10.1007/s11356-015-4241-0CrossRefGoogle Scholar
  10. Essington M, 2003. Soil and water Chemistry: An integrative Approach. Florida, USA: CRC Press.Google Scholar
  11. Georgiev P, Groudev S, Spasova I et al., 2014. Ecotoxicological characteristic of a soil polluted by radioactive elements and heavy metals before and after its bioremediation. Journal of Geochemical Exploration, 142: 122–129. doi: 10.1016/j.gexplo.2014.02.024CrossRefGoogle Scholar
  12. Gu Y G, Li Q S, Fang J H et al., 2014. Identification of heavy metal sources in the reclaimed farmland soils of the pearl river estuary in China using a multivariate geostatistical approach. Ecotoxicology and Environmental Safety, 105(1): 7–12. doi: 10.1016/j.ecoenv.2014.04.003CrossRefGoogle Scholar
  13. Guo J, Kang Y, Feng Y, 2017. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron. Journal of Environment Management, 203(Pt1): 278–285. doi: 10.1016/j.jenvman.2017.07.075CrossRefGoogle Scholar
  14. Guo J H, Liu X J, Zhang Y et al., 2010. Significant acidification in major Chinese croplands. Science, 327(5968): 1008–1010. doi: 10.1126/science.1182570CrossRefGoogle Scholar
  15. Ho E S, Mauk J L, 1996. Relationship between organic matter and copper mineralization in the Proterozoic Nonesuch Formation, northern Michigan. Ore Geology Reviews, 11(1–3): 71–87. doi: 10.1016/0169-1368(95)00016-XCrossRefGoogle Scholar
  16. Jackson L J, Kalff J. Rasnnussen J B, 1993. Sediment pH and redox potential affect the bioavailability of Al, Cu. Canadian Journal of Fisheries and Aquatic Sciences, 50(1): 143–148. doi: 10.1139/f93-016CrossRefGoogle Scholar
  17. Jin Z, Li Z, Li Q et al., 2014. Canonical correspondence analysis of soil heavy metal pollution, microflora and enzyme activities in the Pb-Zn mine tailing dam collapse area of Sidi village, SW China. Environmental Earth Sciences, 73(1): 267–274. doi: 10.1007/s12665-014-3421-4CrossRefGoogle Scholar
  18. Kaiser K, Zech W, 1997. Natural organic matter sorption on different mineral surfaces studied by DRIFT spectroscopy. Sciences of Soils. 1997.Google Scholar
  19. Karlsson T, Persson P, Skyllberg U, 2006. Complexation of copper(II) in organic soils and in dissolved organic matter–EXAFS evidence for chelate ring structures. Environment Science Technoogy, 40(8): 2623–2628. doi: 10.1021/es052211fCrossRefGoogle Scholar
  20. Kelepertzis E, 2014. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma, 221(27): 82–90. doi: 1016/j.geoderma.2014.01.007CrossRefGoogle Scholar
  21. Khan K, Lu Y, Khan H et al., 2013. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food amp; Chemical Toxicology, 58(7): 449–458. doi: 10.1016/j.fct.2013.05.014CrossRefGoogle Scholar
  22. Li X, Feng L, 2012. Multivariate and geostatistical analyzes of metals in urban soil of Weinan industrial areas, Northwest of China. Atmospheric Environment, 47(47): 58–65. doi: 10.1016/j.atmosenv.2011.11.041CrossRefGoogle Scholar
  23. Liu P, Zhao H J, Wang L L et al., 2011. Analysis of heavy metal sources for vegetable soils from Shandong Province, China. Agricultural Sciences in China, 10(1): 109–119. doi: 10.1016/S1671-2927(11)60313-1CrossRefGoogle Scholar
  24. Liu Y, Xiao T, Ning Z, et al., 2013. High cadmium concentration in soil in the Three Gorges region: geogenic source and potential bioavailability. Applied Geochemistry, 37(1): 149–156. doi: 10.1016/j.apgeochem.2013.07.022CrossRefGoogle Scholar
  25. Luo H W, Yin X, Jubb A M et al., 2017. Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation. Environment Pollution, 220(B): 1359–1365. doi: 10.1016/j.envpol.2016.10.099CrossRefGoogle Scholar
  26. Lv J, Liu Y, Zhang Z et al., 2014. Multivariate geostatistical analyses of heavy metals in soils: spatial multi-scale variations in Wulian, Eastern China. Ecotoxicology amp; Environmental Safety, 107(9): 140–147. doi: 10.1016/j.ecoenv.2014.05.019CrossRefGoogle Scholar
  27. Mortvedt J J, 1995. Heavy metal contaminants in inorganic and organic fertilizers. Fertilizer Research, 43(1–3): 55–61. doi: 10.1007/bf00747683.Google Scholar
  28. Ravichandran M, 2004. Interactions between mercury and dissolved organic matter-a review. Chemosphere, 55(3): 319–331. doi: 10.1016/j.chemosphere.2003.11.011CrossRefGoogle Scholar
  29. Rodríguez Martín J A, Ramos-Miras J J, Boluda R et al., 2013. Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma, 200(6): 180–188. doi: 10.1016/j.geoderma.2013.02.014CrossRefGoogle Scholar
  30. Sastre J, Rauret G, Vidal M, 2007. Sorption–desorption tests to assess the risk derived from metal contamination in mineral and organic soils. Environment International, 33(2): 246–256. doi: 0.1016/j.envint.2006.09.017CrossRefGoogle Scholar
  31. Seshadri B, Bolan N S, Wijesekara H et al., 2016. Phosphorus-cadmium interactions in paddy soils. Geoderma, 270: 43–59. doi: 10.1016/j.geoderma.2015.11.029CrossRefGoogle Scholar
  32. Shahriary E, Palmer M W, Tongway D J et al., 2012. Plant species composition and soil characteristics around Iranian piospheres. Journal of Arid Environments, 82(82): 106–114. doi: 10.1016/j.jaridenv.2012.02.004CrossRefGoogle Scholar
  33. Shukla U C, 1971. Organic matter and zinc availability in soils. Geoderma, 6(4): 309–314. doi: 10.1016/0016-7061(71)90060-7CrossRefGoogle Scholar
  34. Sinwar P, Mehta S C, Grewal K S et al., 2011. Influence of organic matter on retention and release of lead in a semi-arid soil from India. Haryanaagronomists Org, 27(1–2): 1–4.Google Scholar
  35. Srinivasan M, Bhatia S, Shenoy K, 2015. Vegetation-environment relationships in a South Asian tropical montane grassland ecosystem: Restoration implications. Trophic Ecology, 56(2): 201–217.Google Scholar
  36. State Environmental Protection Administration, People’s Republic of China, 2004. The Technical Specification for Soil Environmental Monitoring (HJ/T 166–2004). Beijing: China Environmental Science Press. (in Chinese)Google Scholar
  37. State Environmental Protection Administration, People’s Republic of China, 2006. Environmental Quality Evaluation Standard for Farmland Of Greenhouse Vegetables Production (HJ 333–2006). Beijing: China Environmental Science Press. (in Chinese)Google Scholar
  38. Wångstrand H, Eriksson J, Öborn I, 2007. Cadmium concentration in winter wheat as affected by nitrogen fertilization. European Journal of Agronomy, 26(3): 209–214. doi: 10. 1016/j.eja.2006.09.010CrossRefGoogle Scholar
  39. Wang F L, Huang P M, 2001. Effects of organic matter on the rate of potassium adsorption by soils. Canadian Journal of Soil Science, 81(3): 325–330. doi: 10.4141/S00-069CrossRefGoogle Scholar
  40. Wang L F, Bai Y X, Gai S N, 2011. Single-factor and nemerow multi-factor index to assess heavy metals contamination in soils on railway side of Harbin-Suifenhe railway in Northeastern China. Applied Mechanics amp; Materials, 71–78(6637): 3033–3036. doi: 10.4028/www.scientific.net/AMM.71-78.3033Google Scholar
  41. Wang S, Gao B, Li Y et al., 2017. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests. Journal of Hazardous Materials, 322(PtA): 172–181. doi: 10.1016/j.jhazmat.2016.01.052CrossRefGoogle Scholar
  42. Wang S S, Gao B, Li Y C et al., 2015a. Manganese oxide- modified biochars: Preparation, characterization, and sorption of arsenate and lead. Bioresource Technology, 181: 13–17. doi: 10.1016/j.biortech.2015.01.044CrossRefGoogle Scholar
  43. Wang S S, Gao B, Zimmerman A R et al., 2015b. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology, 175: 391–395. doi: 0.1016/j.biortech.2014.10.104CrossRefGoogle Scholar
  44. Werkenthin M, Kluge B, Wessolek G, 2014. Metals in European roadside soils and soil solution–A review. Environ. Pollut., 189(12): 98–110. doi: 10.1016/j.envpol.2014.02.025CrossRefGoogle Scholar
  45. Xia X, Yang Z, Cui Y et al., 2014. Soil heavy metal concentrations and their typical input and output fluxes on the southern Song-nen Plain, Heilongjiang Province, China. Journal of Geochemical Exploration, 139(1): 85–96. doi: 0.1016/j.gexplo.2013.06.008CrossRefGoogle Scholar
  46. Xiao L, Guan D, Peart M R et al., 2017. The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain. Chemosphere, 185: 868–878. doi: 0.1016/j.chemosphere.2017.07.096CrossRefGoogle Scholar
  47. Yang L, Huang B, Hu W et al., 2013. Assessment and source identification of trace metals in the soils of greenhouse vegetable production in eastern China. Ecotoxicology and Environmental Safety, 97(11): 204–209. doi: 10.1016/j.ecoenv.2013.08.002CrossRefGoogle Scholar
  48. Yu W, Ding X, Xue S et al., 2013. Effects of organic-matter application on phosphorus adsorption of three soil parent materials. Journal of Soil Science amp; Plant Nutrition, 13(4): 1003–1017. doi: 10.4067/S0718-95162013005000079Google Scholar
  49. Zeng X B, Li L F, Mei X R, 2008. Heavy metal content in Chinese vegetable plantation land soils and related source analysis. Journal of Integrative Agriculture, 7(9): 1115–1126. doi: 10.1016/S1671-2927(08)60154-6Google Scholar
  50. Zhang H Z, Li H, Wang Z, Zhou L D, 2011. Accumulation characteristics of copper and cadmium in greenhouse vegetable soils in Tongzhou district of Beijing. Procedia Environmental Sciences, 10(1): 289–294. doi: 10.1016/j.proenv.2011.09.047CrossRefGoogle Scholar

Copyright information

© Science Press, Northeast Institute of Geography and Agricultural Ecology, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jun Wang
    • 1
  • Wenkui Mi
    • 1
  • Peipei Song
    • 1
  • Hui Xie
    • 1
  • Lusheng Zhu
    • 1
  • Jinhua Wang
    • 1
  1. 1.College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of ShandongShandong Agricultural UniversityTaianChina

Personalised recommendations