Chinese Geographical Science

, Volume 28, Issue 4, pp 665–679 | Cite as

Comparative Assessment of Tundra Vegetation Changes Between North and Southwest Slopes of Changbai Mountains, China, in Response to Global Warming

  • Yinghua Jin
  • Yingjie Zhang
  • Jiawei XuEmail author
  • Yan Tao
  • Hongshi He
  • Meng Guo
  • Ailin Wang
  • Yuxia Liu
  • Liping Niu


Vegetation in high altitude areas normally exhibits the strongest response to global warming. We investigated the tundra vegetation on the Changbai Mountains and revealed the similarities and differences between the north and the southwest slopes of the Changbai Mountains in response to global warming. Our results were as follows: 1) The average temperatures in the growing season have increased from 1981 to 2015, the climate tendency rate was 0.38°C/10yr, and there was no obvious change in precipitation observed. 2) The tundra vegetation of the Changbai Mountains has changed significantly over the last 30 years. Specifically, herbaceous plants have invaded into the tundra zone, and the proportion of herbaceous plants was larger than that of shrubs. Shrub tundra was transforming into shrub-grass tundra. 3) The tundra vegetation in the north and southwest slopes of the Changbai Mountains responded differently to global warming. The southwest slope showed a significantly higher degree of invasion from herbaceous plants and exhibited greater vegetation change than the north slope. 4) The species diversity of plant communities on the tundra zone of the north slope changed unimodally with altitude, while that on the tundra zone of the southwest slope decreased monotonously with altitude. Differences in the degree of invasion from herbaceous plants resulted in differences in species diversity patterns between the north and southwest slopes. Differences in local microclimate, plant community successional stage and soil fertility resulted in differential responses of tundra vegetation to global warming.


global warming Changbai Mountains tundra vegetation change species diversity patterns 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerly D D, Loarie S R, Cornwell W K et al., 2010. The geography of climate change: implications for conservation biogeography. Diversity and Distributions, 16(3): 476–487. doi: 10.1111/j.1472-4642.2010.00654.xCrossRefGoogle Scholar
  2. Alexander L V, Zhang X, Peterson T C et al., 2006. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres, 111(D5): D05109. doi: 10.1029/2005JD006290CrossRefGoogle Scholar
  3. Bahn M, Körner C, 2003. Recent increases in summit flora caused by warming in the Alps. In: Nagy L et al. (eds). Alpine Biodiversity in Europe. Berlin: Springer, 437–441. doi: 10.1007/978-3-642-18967-8_27CrossRefGoogle Scholar
  4. Beckage B, Osborne B, Gavin D G et al., 2008. A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proceedings of the National Academy of Science of the United States of America, 105(11): 4197–4202. doi: 10.1073/pnas.0708921105CrossRefGoogle Scholar
  5. Bjorkman A D, Elmendorf S C, Beamish A L et al., 2015. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Global Change Biology, 21(12): 4651–4661. doi: 10.1111/gcb.1305163CrossRefGoogle Scholar
  6. Britton A J, Beale C M, Towers W et al., 2009. Biodiversity gains and losses: evidence for homogenisation of Scottish alpine vegetation. Biological Conservation, 142(18): 1728–1739. doi: 10.1016/j.biocon.2009.03.010CrossRefGoogle Scholar
  7. Bruun H H, Moen J, Virtanen R et al., 2006. Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. Journal of Vegetation Science, 17(1): 37–46. doi: 10.1111/j.1654-1103. 2006.tb02421.xCrossRefGoogle Scholar
  8. Callaway R M, Brooker R W, Choler P et al., 2002. Positive interactions among alpine plants increase with stress. Nature, 417(6891): 844–848. doi: 10.1038/nature00812CrossRefGoogle Scholar
  9. Colwell R K, Hurtt G C, 1994. Nonbiological gradients in species richness and a spurious rapoport effect. The American Naturalist, 144(4): 570–595. doi: 10.1086/285695CrossRefGoogle Scholar
  10. Dai L M, Wu G, Zhao J Z et al., 2002. Carbon cycling of alpine tundra ecosystems on Changbai Mountain and its comparison with arctic tundra. Science in China Series D: Earth Sciences, 45(10): 903–910. doi: 10.1360/02yd9089CrossRefGoogle Scholar
  11. Danby R K, Hik D S, 2007. Variability, contingency and rapid change in recent subarctic alpine tree line dynamics. Journal of Ecology, 95(2): 352–363. doi: 10.1111/j.1365-2745.2006.01200.xCrossRefGoogle Scholar
  12. Danby R K, Koh S, Hik D S et al., 2011. Four decades of plant community change in the alpine tundra of Southwest Yukon, Canada. AMBIO, 40(6): 660–671. doi: 10.1007/s13280-011-0172-2CrossRefGoogle Scholar
  13. DeChaine E G, Martin A P, 2004. Historic cycles of fragmentation and expansion in Parnassius smintheus (Papilionidae) inferred using mitochondrial DNA. Evolution, 58(1): 113–127. doi: 10.1111/j.0014-3820.2004.tb01578.xCrossRefGoogle Scholar
  14. Diaz H F, Eischeid J K, 2007. Disappearing “alpine tundra” Köppen climatic type in the western United States. Geophysical Research Letters, 34(18): L18707. doi: 10.1029/2007GL031253CrossRefGoogle Scholar
  15. Dirnböck T, Dullinger S, Grabherr G, 2003. A regional impact assessment of climate and land-use change on alpine vegetation. Journal of Biogeography, 30(3): 401–417. doi: 10.1046/j.1365-2699.2003.00839.xCrossRefGoogle Scholar
  16. Engler R, Randin C F, Thuiller W et al., 2011. 21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 17(7): 2330–2341. doi: 10.1111/j.1365-2486.2010.02393.xCrossRefGoogle Scholar
  17. Erschbamer B, Kiebacher T, Mallaun M et al., 2009. Short-term signals of climate change along an altitudinal gradient in the South Alps. Plant Ecology, 202(1): 79–89. doi: 10.1007/s11258-008-9556-1CrossRefGoogle Scholar
  18. Erschbamer B, Unterluggauer P, Winkler E et al., 2011. Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy). Preslia, 83(3): 387–401.Google Scholar
  19. Frei E, Bodin J, Walther G R, 2010. Plant species’ range shifts in mountainous areas—All uphill from here? Botanica Helvetica, 120(2): 117–128. doi: 10.1007/s00035-010-0076-yCrossRefGoogle Scholar
  20. Gottfried M, Pauli H, Futschik A et al., 2012. Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2(2): 111–115. doi: 10.1038/nclimate1329CrossRefGoogle Scholar
  21. Gough L, Shaver G R, Carroll J et al., 2000. Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH. Journal of Ecology, 88(1): 54–66. doi: 10.1046/j.1365-2745.2000.00426.xCrossRefGoogle Scholar
  22. Grabherr G, Gottfried M, Pauli H, 1994. Climate effects on mountain plants. Nature, 369(6480): 448. doi: 10.1038/369448a0CrossRefGoogle Scholar
  23. Grabherr G, Gottfried M, Gruber A et al., 1995. Patterns and current changes in alpine plant diversity. In: Chapin III F S and Körner C (eds). Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences. Berlin: Springer, 167–181. doi: 10.1007/978-3-642-78966-3_12Google Scholar
  24. Grime J P, 1973a. Competitive exclusion in herbaceous vegetation. Nature, 242(5396): 344–347. doi: 10.1038/242344a0CrossRefGoogle Scholar
  25. Grime J P, 1973b. Control of species density in herbaceous vegetation. Journal of Environmental Management, 1: 151–167.Google Scholar
  26. Grime J P, 1979. Ecological classification. Science, 206(22): 1176–1177. doi: 10.1126/science.206.4423.1176Google Scholar
  27. Grime J P, 1998. Benefits of plant diversity to ecosystems: Immediate, filter and founder effects. Journal of Ecology, 86(6): 902–910. doi: 10.1046/j.1365-2745.1998.00306.xCrossRefGoogle Scholar
  28. Grytnes J A, 2003. Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography, 26(3): 291–300. doi: 10.1034/j.1600-0587.2003.03358.xCrossRefGoogle Scholar
  29. Heikkinen R K, Neuvonen S, 1997. Species richness of vascular plantsin the subarctic landscape of northern Finland: modelling relationships to the environment. Biodiversity and Conservation, 6(9): 1181–1201. doi: 10.1023/A:1018356823171CrossRefGoogle Scholar
  30. Henry G H R, Molau U, 1997. Tundra plants and climate change: The International Tundra Experiment (ITEX). Global Change Biology, 3(S1): 1–9. doi: 10.1111/j.1365-2486.1997.gcb132.xCrossRefGoogle Scholar
  31. Holzinger B, Hülber K, Camenisch M et al., 2008. Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecology, 195(2): 179–196. doi: 10.1007/s11258-007-9314-9CrossRefGoogle Scholar
  32. Huang Xichou, Li Chonghao, 1984. An analysis on the ecology of alpine tundra landscape of Changbai Mountains. Acta Geographica Sinica, 39(3): 285–297. (in Chinese)Google Scholar
  33. Huelber K, Gottfried M, Pauli H et al., 2006. Phenological responses of snowbed species to snow removal dates in the Central Alps: implications for climate warming. Arctic, Antarctic, and Alpine Research, 38(1): 99–103. doi: 10.1657/1523-0430(2006)038[0099:PROSST]2.0.CO;2CrossRefGoogle Scholar
  34. Hughes L, 2000. Biological consequences of global warming: is the signal already apparent? Trends in Ecology and Evolution, 15(2): 56–61. doi: 10.1016/S0169-5347(99)01764-4CrossRefGoogle Scholar
  35. Inouye D W, 2008. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology, 89(2): 353–362. doi: 10.1890/06-2128.1CrossRefGoogle Scholar
  36. IPCC, 2007. Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  37. Jin Yinghua, Xu Jiawei, Liang Yu et al., 2013. Effects of volcanic interference on the vegetation distribution of Changbai Mountain. Scientia Geographica Sinica, 33(2): 203–208. (in Chinese)Google Scholar
  38. Jin Yinghua, Xu Jiawei, Liu Lina et al., 2016. Spatial distribution pattern and associations of dominant plant species in the alpine tundra of the Changbai Mountains. Scientia Geographica Sinica, 36(8): 1212–1218. (in Chinese)Google Scholar
  39. Jin Yinghua, Xu Jiawei, Wang Shaoxian et al., 2017. Distribution variations of dominant plant species in degraded shrub tundra on the western slope of the Changbai Mountains. Acta Ecologica Sinica, 37(11): 3716–3723. (in Chinese)Google Scholar
  40. Kazakis G, Ghosn D, Vogiatzakis I N et al., 2007. Vascular plant diversity and climate change in the alpine zone of the Lefka Ori, Crete. Biodiversity and Conservation, 16(6): 1603–1615. doi: 10.1007/s10531-006-9021-1CrossRefGoogle Scholar
  41. Kelly A E, Goulden M L, 2008. Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences of the United States of America, 105(33): 11823–11826. doi: 10.1073/pnas.0802891105CrossRefGoogle Scholar
  42. Kessler M, 2000. Elevational gradients in species richness and endemism of selected plant groups in the central Bolivian Andes. Plant Ecology, 149(2): 181–93. doi: 10.1023/A:1026500710274CrossRefGoogle Scholar
  43. Klanderud K, Birks H J B, 2003. Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. The Holocene, 13(1): 1–6. doi: 10.1191/0959683603hl589ftCrossRefGoogle Scholar
  44. Körner C, 1998. A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115(4): 445–459. doi: 10.1007/s004420050540CrossRefGoogle Scholar
  45. Körner C, 2000. Why are there global gradients in species richness? Mountains might hold the answer. Trends in Ecology and Evolution, 15(12): 513–514. doi: 10.1016/S0169-5347(00)02004-8CrossRefGoogle Scholar
  46. Körner C, Paulsen J, 2004. A world-wide study of high altitude treeline temperatures. Journal of Biogeography, 31(5): 713–732. doi: 10.1111/j.1365-2699.2003.01043.xCrossRefGoogle Scholar
  47. Lesica P, McCune B, 2004. Decline of arctic-alpine plants at the southern margin of their range following a decade of climatic warming. Journal of Vegetation Science, 15(5): 679–690. doi: 10.1111/j.1654-1103.2004.tb02310.xCrossRefGoogle Scholar
  48. Lomolino M V, 2001. Elevation gradients of species-density: historical and prospective views. Global Ecology and Biogeography, 10(1): 3–13. doi: 10.1046/j.1466-822x.2001.00229.xCrossRefGoogle Scholar
  49. McDougall K L, Morgan J W, Walsh N G et al., 2005. Plant invasions in treeless vegetation of the Australian Alps. Perspectives in Plant Ecology, Evolution and Systematics, 7(3): 159–171. doi: 10.1016/j.ppees.2005.09.001CrossRefGoogle Scholar
  50. Meng Xianxi, 1982. The alpine tundra soil on the Changbai Mountain of China. Scientia Geographica Sinica, 2(1): 57–64. (in Chinese)Google Scholar
  51. Mitchell M G E, Cahill J F, Hik D S, 2009. Plant interactions are unimportant in a subarctic-alpine plant community. Ecology, 90(9): 2360–2367. doi: 10.1890/08-0924.1CrossRefGoogle Scholar
  52. Moser D, Dullinger S, Englisch T et al., 2005. Environmental determinants of vascular plant species richness in the Austrian Alps. Journal of Biogeography, 32(7): 1117–1127. doi: 10. 1111/j.1365-2699.2005.01265.xCrossRefGoogle Scholar
  53. Mueller-Dombois D, Ellenberg H, 1974. Aims and Methods of Vegetation Ecology. New York: John Wiley and SonsGoogle Scholar
  54. Myers-Smith I H, Forbes B C, Wilmking M et al., 2011. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environmental Research Letters, 6(4): 045509. doi: 10.1088/1748-9326/6/4/045509CrossRefGoogle Scholar
  55. Odland A, Birks H J B, 1999. The altitudinal gradient of vascular plant richness in Aurland, western Norway. Ecography, 22(5): 548–566. doi: 10.1111/j.1600-0587.1999.tb01285.xCrossRefGoogle Scholar
  56. Odland A, Høitomt T, Olsen S L, 2010. Increasing vascular plant richness on 13 high mountain summits in southern Norway since the early 1970s. Arctic, Antarctic, and Alpine Research, 42(4): 458–470. doi: 10.1657/1938-4246-42.4.458CrossRefGoogle Scholar
  57. Oommen M A, Shanker K, 2005. Elevational species richness patterns emerge from multiple local mechanisms in Himalayan woody plants. Ecology, 86(11): 3039–47. doi: 10.1890/04-1837CrossRefGoogle Scholar
  58. Parmesan C, Yohe G, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918): 37–42. doi: 10.1038/nature01286CrossRefGoogle Scholar
  59. Parolo G, Rossi G, 2008. Upward migration of vascular plants following a climate warming trend in the Alps. Basic and Applied Ecology, 9(2): 100–107. doi: 10.1016/j.baae.2007.01.005CrossRefGoogle Scholar
  60. Pauli H, Gottfried M, Dullinger S et al., 2012. Recent plant diversity changes on Europe’s mountain summits. Science, 336(6079): 353–355. doi: 10.1126/science.1219033CrossRefGoogle Scholar
  61. Pauli H, Gottfried M, Dirnböck T et al., 2003. Assessing the long-term dynamics of endemic plants at summit habitats. In: Nagy L et al. (eds). Alpine Biodiversity in Europe. Berlin: Springer, 195–207. doi: 10.1007/978-3-642-18967-8_9CrossRefGoogle Scholar
  62. Pauli H, Gottfried M, Reiter K et al., 2007. Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master site Schrankogel, Tyrol, Austria. Global Change Biology, 13(1): 147–156. doi: 10.1111/j.1365-2486.2006.01282.xCrossRefGoogle Scholar
  63. Qian Jiaju, Zhang Wenzhong, 1980. A brief report on the research of the Changbaishan alpine tundra vegetation. Journal of Northeast Normal University (Natural Science Edition), (1): 51–67. (in Chinese)Google Scholar
  64. Qian Hong, 1990. Numerical classification and ordination of plant communities in the alpine tundra of Mt. Changbai. Journal of Applied Ecology, 1(3): 254–263. (in Chinese)Google Scholar
  65. Rahbek C, 1995. The elevational gradient of species richness—A uniform pattern. Ecography, 18(2): 200–205. doi: 10.1111/j.1600-0587.1995.tb00341.xCrossRefGoogle Scholar
  66. Ricklefs R E, 1989. Speciation and diversity: the integration of local and regional processes. In: Otte D and Endler J A (eds). Speciation and Its Consequences. Sunderland, MA, USA: Sinauer, 599–622.Google Scholar
  67. Sammul M, Kull K, Oksanen L et al., 2000. Competition intensity and its importance: results of field experiments with Anthoxanthum odoratum. Oecologia, 125(1): 18–25. doi: 10. 1007/PL00008887CrossRefGoogle Scholar
  68. Scherrer D, Körner C, 2011. Topographically controlled thermal- habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography, 38(2): 406–416. doi: 10.1111/j.1365-2699.2010.02407.xCrossRefGoogle Scholar
  69. Shimono A, Zhou H K, Shen H H et al., 2010. Patterns of plant diversity at high altitudes on the Qinghai-Tibetan Plateau. Journal of Plant Ecology, 3(1): 1–7. doi: 10.1093/jpe/rtq002CrossRefGoogle Scholar
  70. Stanisci A, Pelino G, Blasi C, 2005. Vascular plant diversity and climate change in the alpine belt of the central Apennines (Italy). Biodiversity and Conservation, 14(6): 1301–1318. doi: 10.1007/s10531-004-9674-6CrossRefGoogle Scholar
  71. Symon C, Arris L, Heal B, 2005. Arctic Climate Impact Assessment. Cambridge: Cambridge University Press.Google Scholar
  72. Theurillat J P, Guisan A, 2001. Potential impact of climate change on vegetation in the European Alps: A review. Climatic Change, 50(1–2): 77–109. doi: 10.1023/A:1010632015572CrossRefGoogle Scholar
  73. Thuiller W, Richardson D M. Midgley G F, 2006. Will climate change promote alien plant invasions? In: Nentwig W (ed). Biological Invasions. Berlin, Heidelberg: Springer, 193: 197–211. doi: 10.1007/978-3-540-36920-2_12CrossRefGoogle Scholar
  74. Vittoz P, Rulence B, Largey T et al., 2008. Effects of climate and land-use change on the establishment and growth of Cembran Pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps. Arctic, Antarctic, and Alpine Research, 40(1): 225–232. doi: 10.1657/1523-0430(06-010)[VITTOZ]2.0.CO;2CrossRefGoogle Scholar
  75. von Haller A, 1742. Enumeratio Methodica Stirpium Helvetiae Indigenarum. Gottingae, DE: A Vanderhoek.Google Scholar
  76. Walther G R, 2003. Plants in a warmer world. Perspectives in Plant Ecology, Evolution and Systematics, 6(3): 169–185. doi: 10.1078/1433-8319-00076CrossRefGoogle Scholar
  77. Walther G R, Beißner S, Burga C A, 2005. Trends in the upward shift of alpine plants. Journal of Vegetation Science, 16(5): 542–548. doi: 10.1111/j.1654-1103.2005.tb02394.xCrossRefGoogle Scholar
  78. Wang X L, Feng Y, 2013. RHtestsV4 User Manual. Toronto, Ontario, Canada: Climate Research Division, Science and Technology Branch, Environment Canada. Scholar
  79. Wei J, Jiang P, Yu D Y et al., 2007. Distribution patterns of vegetation biomass and nutrients bio-cycle in alpine tundra ecosystem on Changbai Mountains, Northeast China. Journal of Forestry Research, 18(4): 271–278. doi: 10.1007/S11676-007-0055-3CrossRefGoogle Scholar
  80. Xu Jiawei, Zhang Feihu, 2010. Several main questions of physical geography research of Changbai Mountains. In Wang Yeqiao et al. (eds.). Geosystems and ecological security of the Changbai Mountainss: IV. Changchun: Northeast Normal University Press, 266–274. (in Chinese)Google Scholar
  81. Yang Meihua, 1981. The climatic features of Changbaishan and its vertical climatic zone on the northern slop. Acta Meteorologica Sinica, 39(3): 57–66. (in Chinese)Google Scholar
  82. Zong Shengwei, Xu Jiawei, Wu Zhengfang, 2013. Investigation and mechanism analysis on the invasion of Deyeuxia. angustifolia to tundra zone in western slope of Changbai Mountain. Journal of Mountain Science, 31(4): 448–455. (in Chinese)Google Scholar
  83. Zong Shengwei, Xu Jiawei, Wu Zhengfang et al., 2014. Analysis of the process and impacts of Deyeuxia angustifolia invasion on the Alpine Tundra, Changbai Mountain. Acta Ecologica Sinica, 34(23): 6837–6846. (in Chinese)Google Scholar

Copyright information

© Science Press, Northeast Institute of Geography and Agricultural Ecology, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yinghua Jin
    • 1
  • Yingjie Zhang
    • 1
  • Jiawei Xu
    • 1
    Email author
  • Yan Tao
    • 1
  • Hongshi He
    • 1
    • 2
  • Meng Guo
    • 1
  • Ailin Wang
    • 1
  • Yuxia Liu
    • 1
  • Liping Niu
    • 1
  1. 1.School of Geographical SciencesNortheast Normal UniversityChangchunChina
  2. 2.School of Natural ResourcesUniversity of MissouriColumbiaUSA

Personalised recommendations