Chinese Geographical Science

, Volume 28, Issue 2, pp 274–286 | Cite as

Remote Sensing Data and SLEUTH Urban Growth Model: As Decision Support Tools for Urban Planning

  • Inoka Sandamali Serasinghe Pathiranage
  • Lakshmi N. Kantakumar
  • Sivanantharajah Sundaramoorthy


Sri Lanka is experiencing speedy urbanization by converting the agriculture land and other natural land cover into built-up land. The urban population of Sri Lanka is expected to reach to 60% by 2030 from 14% in 2010. The rapid growth in urban population and urban areas in Sri Lanka may cause serious socioeconomic disparities, if they are not handled properly. Thus, planners in Sri Lanka are in need of information about past and future urban growth patterns to plan a better and sustainable urban future for Sri Lanka. In this paper, we analyzed the characteristics of past land use and land cover trends in Matara City of Sri Lanka from 1980 to 2010 to assess the historic urban dynamics. The land use change detection analysis based on remote sensing datasets reveal that the conversion of homestead/ garden and paddy into urban land is evident in Matara City. The historic urban trends are projected into the near future by using SLEUTH urban growth model to identify the hot spots of future urbanization and as well as the urban growth patterns in Matara City up to the basic administrative level, i.e., Grama Niladari Divisions (GND). The urban growth simulations for the year 2030 reveal that 29 GNDs out of 66 GNDs in Matara City will be totally converted into urban land. Whereas, 28 GNDs will have urban land cover from 75% to 99% by 2030. The urban growth simulations are further analyzed with respect to the proposed Matara city development plan by the Urban Development Authority (UDA) of Sri Lanka. The results show that the UDA’s city development plan of Matara will soon be outpaced by rapid urbanization. Based on the calibration and validation results, the SLEUTH model proved to be a useful planning tool to understand the near future urbanization of Sri Lankan cities.


urban growth urban planning land use land cover SLEUTH model Cellular Automata (CA) remote sensing Sri Lanka 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We express our sincere thanks to Prof. Lasantha MANAWADU, Department of Geography, University of Colombo (UOC), Mr. V B P Samarawikrama, GIS and Remote Sensing Analyst, SMEC international and Mr. Chinthake PERERA, Coordinator Extension Programs, IHRA, UOC, Prof. Shamita KUMAR and Joshua D’MELLO from the Institute of Environment Education and Research (IEER), Bharati Vidyapeeth Deemed University (BVDU), Pune.


  1. Abd-Allah M M A, 2007. Modelling Urban Dynamics using Geographic Information Systems, Remote Sensing and Urban Growth Models. Cairo: Cairo University.Google Scholar
  2. Al-shalabi M, Billa L, Pradhan B et al., 2013. Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana’a metropolitan city, Yemen. Environmental Earth Sciences, 70(1): 425–437. doi: 10.1007/s12665-012-2137-6CrossRefGoogle Scholar
  3. Ayazli I E, Kilic F, Demir H, 2014. A simulation model of urban growth driven by the bosphorus bridges. In: Popovich V et al. (eds). Information Fusion and Geographic Information Systems. Berlin Heidelberg: Springer, 237–248.Google Scholar
  4. Batty M, Xie Y C, Sun Z L, 1999. Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems, 23(3): 205–233. doi: 10.1016/S0198-9715(99)00015-0CrossRefGoogle Scholar
  5. Bhatta B, 2009. Analysis of urban growth pattern using remote sensing and GIS: a case study of Kolkata, India. International Journal of Remote Sensing, 30(18): 4733–4746. doi: 10.1080/01431160802651967CrossRefGoogle Scholar
  6. Birch E L, Wachter S M, 2011. Global Urbanization. Philadelphia, PA: University of Pennsylvania Press.CrossRefGoogle Scholar
  7. Butsch C, Kumar S, Wagner P Det al., 2017. Growing ‘smart’? Urbanization processes in the pune urban agglomeration. Sustainability, 9: 2335. Scholar
  8. Chaudhuri G, Clarke K, 2013. The SLEUTH land use change model: a review. Environmental Resources Research, 1(1): 88–105. doi: 10.22069/IJERR.2013.1688Google Scholar
  9. Clarke K C, Hoppen S, Gaydos L, 1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay Area. Environment and Planning B: Planning and Design, 24(2): 247–261. doi: 10.1068/b240247CrossRefGoogle Scholar
  10. Clarke K C, Gaydos L J, 1998. Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12(7): 699–714. doi: 10.1080/136588198241617CrossRefGoogle Scholar
  11. Coppin P, Jonckheere I, Nackaerts K et al., 2004. Digital change detection methods in ecosystem monitoring: a review. International Journal of Remote sensing, 25: 1565–1596. Scholar
  12. Dietzel C, Clarke K C, 2007. Toward optimal calibration of the SLEUTH land use change model. Transactions in GIS, 11(1): 29–45. doi: 10.1111/j.1467-9671.2007.01031.xCrossRefGoogle Scholar
  13. El-Hattab M M, 2016. Applying post classification change detection technique to monitor an Egyptian coastal zone (Abu Qir Bay). The Egyptian Journal of Remote Sensing and Space Science, 19: 23–36. Scholar
  14. Feng H H, Liu H P, Lü Y, 2012. Scenario prediction and analysis of urban growth using SLEUTH model. Pedosphere, 22, 206–216. Scholar
  15. Gandhi S I, Suresh V M, 2012. Prediction of urban sprawl in Hyderabad City using spatial model, remote sensing and GIS techniques. International Journal of Scientific Research, 1(2): 80–81. doi: 10.15373/22778179CrossRefGoogle Scholar
  16. Goers L, Lawson J, Garen E, 2012. Economic drivers of tropical deforestation for agriculture. Managing Forest Carbon in a Changing Climate. Dordrecht: Springer, 305–320. Scholar
  17. Goldstein N C, 2004. Brains versus brawn-comparative strategies for the calibration of a cellular automata-based urban growth model. In: Atkinson P M et al. (eds). Citation Information. Boca Ration, FL: CRC Press, 249–272. doi: 10.1201/9781420038101.ch18Google Scholar
  18. Goodarzi M S, Sakieh Y, Navardi S, 2017. Scenario-based urban growth allocation in a rapidly developing area: a modeling approach for sustainability analysis of an urban-coastal coupled system. Environment Development and Sustainability, 19, 1103–1126. Scholar
  19. Grimm N B, Faeth S H, Golubiewski N E et al., 2008. Global change and the ecology of cities. Science, 319(5864): 756–760. doi: 10.1126/science.1150195CrossRefGoogle Scholar
  20. Jafarnezhad J, Salmanmahiny A, Sakieh Y, 2016. Subjectivity versus objectivity: comparative study between Brute Force method and Genetic Algorithm for calibrating the SLEUTH urban growth model. Journal of Urban Planning and Development, 142(3): 05015015. doi: 10.1061/(ASCE)UP.1943-5444.0000307CrossRefGoogle Scholar
  21. Jantz C A, Goetz S J, Shelley M K, 2004. Using the sleuth urban growth model to simulate the impacts of future policy scenarios on urban land use in the Baltimore-Washington metropolitan area. Environment and Planning B: Planning and Design, 31(2): 251–271. doi: 10.1068/b2983CrossRefGoogle Scholar
  22. Jantz C A, Goetz S J, Donato D et al., 2010. Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model. Computers, Environment and Urban Systems, 34(1): 1–16. doi: 10.1016/j.compenvurbsys.2009.08.003CrossRefGoogle Scholar
  23. Jat M K, Choudhary M, Saxena A, 2017. Urban growth assessment and prediction using RS, GIS and SLEUTH model for a heterogeneous urban fringe. The Egyptian Journal of Remote Sensing and Space Science. doi: 10.1016/j.ejrs.2017.02.002Google Scholar
  24. Kantakumar L N, Neelamsetti P, 2015. Multi-temporal land use classification using hybrid approach. The Egyptian Journal of Remote Sensing and Space Science, 18(2): 289–295, doi: 10.1016/j.ejrs.2015.09.003CrossRefGoogle Scholar
  25. Kantakumar L N, Kumar S, Schneider K, 2016. Spatiotemporal urban expansion in Pune metropolis, India using remote sensing. Habitat International, 51: 11–22. doi: 10.1016/j.habitatint.2015.10.007CrossRefGoogle Scholar
  26. KantaKumar N L, Sawant N G, Kumar S, 2011. Forecasting urban growth based on GIS, RS and SLEUTH model in Pune metropolitan area. International Journal of Geomatics and Geosciences, 2(2): 568–579.Google Scholar
  27. Kuang Wenhui, 2011. Simulating dynamic urban expansion at regional scale in Beijing-Tianjin-Tangshan Metropolitan Area. Journal of Geographical Sciences, 21(2): 317–330. doi: 10.1007/s11442-011-0847-4CrossRefGoogle Scholar
  28. Kuang Wenhui, 2012. Spatio-temporal patterns of intra-urban land use change in Beijing, China between 1984 and 2008. Chinese Geographical Science, 22(2): 210–220. doi: 10.1007/s11769-012-0529-xCrossRefGoogle Scholar
  29. Lambin E F, Geist H J, Lepers E, 2003. Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources, 28(1): 205–241. doi: 10.1146/ Scholar
  30. Li X, Yeh A G O, 2000. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science, 14(2): 131–152. doi: 10.1080/136588100240886CrossRefGoogle Scholar
  31. Li X M, Zhou W Q, Ouyang Z Y, 2013. Forty years of urban expansion in Beijing: what is the relative importance of physical, socioeconomic, and neighborhood factors? Applied Geography, 38: 1–10. doi: 10.1016/j.apgeog.2012.11.004CrossRefGoogle Scholar
  32. Osman T, Divigalpitiya P, Arima T, 2016. Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on land use in the Giza Governorate, Greater Cairo Metropolitan region. International Journal of Urban Sciences, 20(3): 407–426. doi: 10.1080/12265934.2016.1216327CrossRefGoogle Scholar
  33. Sacchi L V, Gasparri N I, 2016. Impacts of the deforestation driven by agribusiness on urban population and economic activity in the Dry Chaco of Argentina. Journal of Land Use Science, 11: 523–537. Scholar
  34. Sakieh Y, Amiri B J, Danekar A et al., 2015. Scenario-based evaluation of urban development sustainability: an integrative modeling approach to compromise between urbanization suitability index and landscape pattern. Environment, Development and Sustainability, 17(6): 1343–1365. doi: 10.1007/s10668-014-9609-7CrossRefGoogle Scholar
  35. Sangawongse S, Sun C H, Tsai B W, 2005. Urban growth and land cover change in Chiang Mai and Taipei: results from the SLEUTH model. Proceedings of the MODSIM 05 Conference. Melbourne, Australia, 2622–2628.Google Scholar
  36. Shalaby Adel, Moghanm Farahat Saad, 2015. Assessment of urban sprawl on agricultural soil of northern Nile Delta of Egypt using RS and GIS. Chinese Geographical Science, 25}(3}): 274–282. doi: 10.1007/s11769-015-0748Google Scholar
  37. Silva E A, Clarke K C, 2002. Calibration of the SLEUTH urban growth model for Lisbon and Porto, Portugal. Computers, Environment and Urban Systems, 26(6): 525–552. doi: 10.1016/S0198-9715(01)00014-XCrossRefGoogle Scholar
  38. Singh A, 1989. Review Article Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6): 989–1003. doi: 10.1080/01431168908903939CrossRefGoogle Scholar
  39. Sohl T L, Claggett P R, 2013. Clarity versus complexity: land-use modeling as a practical tool for decision-makers. Journal of Environmental Management, 129: 235–243. doi: 10.1016/j.jenvman.2013.07.027CrossRefGoogle Scholar
  40. Solecki W D, Oliveri C, 2004. Downscaling climate change scenarios in an urban land use change model. Journal of Environmental Management, 72(1), 105–115. Scholar
  41. Stevens D, Dragicevic S, Rothley K, 2007. iCity: a GIS-CA modelling tool for urban planning and decision making. Environmental Modelling & Software, 22(6): 761–773. doi: 10.1016/j.envsoft.2006.02.004CrossRefGoogle Scholar
  42. Su D Z, 1998. GIS-based urban modelling: practices, problems, and prospects. International Journal of Geographical Information Science, 12(7): 651–671. doi: 10.1080/136588198241581CrossRefGoogle Scholar
  43. World Bank, 2012. Turning Sri Lanka’s Urban Vision into Policy and Action. The International Bank for Reconstruction and Development, the World Bank.Google Scholar
  44. Wagner P D, Bhallamudi S M, Narasimhan B et al., 2016. Dynamic integration of land use changes in a hydrologic assessment of a rapidly developing Indian catchment. Science of the Total Environment, 539: 153–164. doi: 10.1016/j.scitotenv.2015.08.148CrossRefGoogle Scholar
  45. Wu X Q, Hu Y M, He H S et al., 2009. Performance evaluation of the SLEUTH Model in the Shenyang metropolitan area of Northeastern China. Environmental Modeling & Assessment, 14(2): 221–230. doi: 10.1007/s10666-008-9154-6CrossRefGoogle Scholar
  46. Yang X J, 2010. Integration of remote sensing with GIS for urban growth characterization. In: Jiang B and Yao X (eds). Geospatial Analysis and Modelling of Urban Structure and Dynamics. Dordrecht: Springer, 223–250. doi: 10.1007/978-90-481-8572-6_12CrossRefGoogle Scholar
  47. Yuan F, Sawaya K E, Loeffelholz B C et al., 2005. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sensing of Environment. 98: 317–328. Scholar

Copyright information

© Science Press, Northeast Institute of Geography and Agricultural Ecology, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Inoka Sandamali Serasinghe Pathiranage
    • 1
    • 2
  • Lakshmi N. Kantakumar
    • 3
  • Sivanantharajah Sundaramoorthy
    • 2
    • 4
  1. 1.Mahaweli Authority of Sri LankaColombo 10Sri Lanka
  2. 2.Institute of Human Resource AdvancementUniversity of ColomboColombo 7Sri Lanka
  3. 3.Institute of Environment Education and ResearchBharati Vidyapeeth Deemed UniversityPuneIndia
  4. 4.District Survey Office, The Sri Lanka Survey DepartmentJaffnaSri Lanka

Personalised recommendations