Drought and Spatiotemporal Variability of Forest Fires Across Mexico


Understanding the spatiotemporal links between drought and forest fire occurrence is crucial for improving decision-making in fire management under current and future climatic conditions. We quantified forest fire activity in Mexico using georeferenced fire records for the period of 2005–2015 and examined its spatial and temporal relationships with a multiscalar drought index, the Standardized Precipitation-Evapotranspiration Index (SPEI). A total of 47 975 fire counts were recorded in the 11-year long study period, with the peak in fire frequency occurring in 2011. We identified four fire clusters, i.e., regions where there is a high density of fire records in Mexico using the Getis-Ord G spatial statistic. Then, we examined fire frequency data in the clustered regions and assessed how fire activity related to the SPEI for the entire study period and also for the year 2011. Associations between the SPEI and fire frequency varied across Mexico and fire-SPEI relationships also varied across the months of major fire occurrence and related SPEI temporal scales. In particular, in the two fire clusters located in northern Mexico (Chihuahua, northern Baja California), drier conditions over the previous 5 months triggered fire occurrence. In contrast, we did not observe a significant relationship between drought severity and fire frequency in the central Mexico cluster, which exhibited the highest fire frequency. We also found moderate fire-drought associations in the cluster situated in the tropical southern Chiapas where agriculture activities are the main causes of forest fire occurrence. These results are useful for improving our understanding of the spatiotemporal patterns of fire occurrence as related to drought severity in megadiverse countries hosting many forest types as Mexico.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA


  1. Aguayo Quezada S, 2007. Almanaque Mexicano 2007. México: Aguilar, 271. (in Spanish)

  2. Aguilar A G, Santos C, 2011. Informal settlements’ needs and environmental conservation in Mexico City: an unsolved challenge for land-use policy. Land Use Policy, 28(4): 649–662. doi: 10.1016/j.landusepol.2010.11.002

  3. Ávila-Flores D Y, Pompa-García M, Vargas-Pérez E, 2010a. Spatial analysis of forest fire occurrence in the state of Durango. Revista Chapingo. Serie Ciencias Forestales y del Ambiente, 16(2): 253–260. doi: 10.5154/r.rchscfa.2009.08.028 (in Spanish)

  4. Ávila-Flores D Y, Pompa-García M, Antonio-Nemiga X et al., 2010b. Driving factors for forest fire occurrence in Durango State of Mexico: a geospatial perspective. Chinese Geographical Science, 20(6): 491–497. doi: 10.1007/s11769-010-0437-x

  5. Balatsos P, Kalabokidis K, Koutsias N, 2007. Fire risk zoning at national level in Greece: methodological approach and outcome. Proceedings of the 4th International Wildland Fire Conference. Seville, Spain.

  6. Beguería S, Vicente-Serrano S M, Reig F et al., 2014. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34(10): 3001–3023. doi: 10.1002/joc.3887

  7. Boer M M, Sadler R J, Wittkuhn R S et al., 2009. Long-term impacts of prescribed burning on regional extent and incidence of wildfires-evidence from 50 years of active fire management in SW Australian forests. Forest Ecology Management, 259(1): 132–142. doi: 10.1016/j.foreco.2009.10.005

  8. Cardille J A, Ventura S J, Turner M G, 2001. Environmental and social factors influencing wildfires in the Upper Midwest, United States. Ecological Applications, 11(1): 111–127. doi: 10.1890/1051-0761(2001)011[0111:EASFIW]2.0.CO;2

  9. Carrillo R L, Rodríguez D A, Tchikoué H et al., 2012. Análisis espacial de peligro de incendios forestales en Puebla, México. Interciencia, 37(9): 678–683. (in Spanish) Castañeda

  10. Rojas M F, Endara Agramont A R, Villers Ruiz M D L et al., 2015. Evaluación forestal y de combustibles en bosques de Pinus hartwegii en el Estado de México según densidades de cobertura y vulnerabilidad a incendios. Madera y Bosques, 21(2): 45–58. (in Spanish) Cerano

  11. Paredes J, Villanueva Díaz J, Fulé P Z, 2010. Reconstrucción de incendios y su relación con el clima para la reserva Cerro el Mohinora, Chihuahua. Revista Mexicana de Ciencias Forestales, 1(1): 63–74. (in Spanish)

  12. Chang Y, Zhu Z L, Bu B C et al., 2013. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landscape Ecology, 28(10): 1989–2004. doi: 10.1007/s 10980-013-9935-4

  13. Collins B M, Omi P N, Chapman P L, 2006. Regional relationships between climate and wildfire-burned area in the Interior West, USA. Canadian Journal of Forest Research, 36(3): 699–709. doi: 10.1139/x05-264

  14. Comisión Nacional Forestal (CONAFOR), 2011. Evaluación preliminar de incendios en La Sabina y El Bonito, municipios de Múzquiz, Ocampo, Zaragoza y Acuña, del estado de Coahuila. Informe ejecutivo. Zapopan, Jalisco: Comisión nacional forestal, Secretaría de medio ambiente y recursos naturales (SEMARNAT). (in Spanish)

  15. Comisión Nacional Forestal (CONAFOR), 2016. Reporte Semanal de Incendios Forestales. Available at http://www.conafor. nal%202016%20-%20Incendios%20Forestales.pdf. Cited 09 May 2016. (in Spanish)

  16. Cook B I, Seager R, 2013. The response of the North American Monsoon to increased greenhouse gas forcing. Journal of Geophysical Research: Atmospheres, 118(4): 1690–1699. doi: 10.1002/jgrd.50111

  17. Cumming S G, 2001. Forest type and wildfire in the Alberta Boreal Mixedwood: what do fires burn? Ecological Applications, 11(1): 97–110. doi: 10.1890/1051-0761(2001)011[0097:FTAWIT] 2.0.CO;2

  18. Díaz-Avalos C, Peterson D L, Alvarado E et al., 2001. Space-time modelling of lightning-caused ignitions in the Blue Mountains, Oregon. Canadian Journal of Forest Research, 31(9): 1579–1593. doi: 10.1139/x01-089

  19. Drury S A, Veblen T T, 2008. Spatial and temporal variability in fire occurrence within the Las Bayas Forestry Reserve, Durango, Mexico. Plant Ecology, 197(2): 299–316. doi: 10.1007/s11258-007-9379-5

  20. Duncan B W, Schmalzer P A, 2004. Anthropogenic influences on potential fire spread in a pyrogenic ecosystem of Florida, USA. Landscape Ecology, 19(2): 153–165. doi: 10.1023/B:

  21. Environmental Systems Research Institute (ESRI), 2016. ArcGis. Available via Cited 10 May 2016.

  22. Flannigan M, Stocks B, Turetsky M et al., 2009. Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biology, 15(3): 549–60. doi: 10.1111/j.1365-2486.2008.01660.x

  23. Flannigan M D, Logan K A, Amiro B D et al., 2005. Future area burned in Canada. Climatic Change, 72(1–2): 1–16. doi: 10.1007/s10584-005-5935-y

  24. Flannigan M D, Amiro B D, Logan K A et al., 2006. Forest fires and climate change in the 21st century. Mitigation and Adaptation Strategies for Global Change, 11(4): 847–859. doi: 10.1007/s11027-005-9020-7

  25. Fortin M J, Dale M R T, 2005. Spatial Analysis: A Guide for Ecologists. Cambridge, UK: Cambridge University Press.

  26. Fulé P Z, Villanueva-Díaz J, Ramos-Gómez M, 2005. Fire regime in a conservation reserve in Chihuahua, México. Canadian Journal of Forest Research, 35(2): 320–330. doi: 10.1139/x 04-173

  27. Genton M G, Butry D T, Gumpertz M L et al., 2006. Spatio-temporal analysis of wildfire ignitions in the St Johns River Water Management District, Florida. International Journal of Wildland Fire, 15(1): 87–97. doi: 10.1071/ WF04034

  28. Getis A, Ord J K, 1992. The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3): 189–206. doi: 10.1111/j.1538-4632.1992.tb00261.x

  29. Gillett N P, Weaver A J, Zwiers F W et al., 2004. Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 31(18): L18211. doi: 10.1029/2004GL 020876

  30. González-Cabán A, Sandberg D V, 1989. Fire management and research needs in México. Journal of Forestry, 87(8): 20–26.

  31. González-Olabarria J R, Brotons L, Gritten D et al., 2012. Identifying location and causality of fire ignition hotspots in a Mediterranean region. International Journal of Wildland Fire, 21(7): 905–914. doi: 10.1071/WF11039

  32. Gralewicz N J, Nelson T A, Wulder M A, 2012. Spatial and temporal patterns of wildfire ignitions in Canada from 1980 to 2006. International Journal of Wildland Fire, 21(3): 230–242. doi: 10.1071/WF10095

  33. Grantz K, Rajagopalan B, Clark M et al., 2007. Seasonal shifts in the North American monsoon. Journal of Climate, 20(9): 1923–1935. doi: 10.1175/JCLI4091.1

  34. Harris I, Jones P D, Osborn T J et al., 2014. Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. International Journal of Climatology, 34(3): 623–642. doi: 10.1002/joc.3711

  35. Heyerdahl E K, Alvarado E, 2003. Influence of climate and land use on historical surface fires in pine-oak forests, Sierra Madre Occidental, Mexico. In: Veblen T T, Baker W L, Montenegro G et al. (eds). Fire and Climatic Change in Temperate Ecosystems of the Western Americas. New York: Springer, 196–217. doi: 10.1007/0-387-21710-X_7

  36. Higgins R W, Yao Y, Wang X L, 1997. Influence of the North American monsoon system on the U.S. summer precipitation regime. Journal of Climate, 10(10): 2600–2622. doi: 10. 1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2

  37. Ibarra-Montoya J L, Huerta-Martínez F M, Francisco M, 2016. Modelado espacial de incendios: una herramienta predictiva para el Bosque La Primavera, Jalisco México. Ambiente & Água, 11(1): 35–49. doi: 10.4136/ambi-agua.1536 (in Spanish)

  38. Instituto Nacional de Estadística y Geografía (INEGI), 2015. Información por entidad, Número de habitantes, Chihuahua, 2015. Available via 08. Cited 09 May 2016. (in Spanish)

  39. Kaufman L, Rousseeuw P J, 1990. Finding Groups in Data: An Introduction to Cluster Analysis. New York: John Wiley.

  40. Koutsias N, Xanthopoulos G, Founda D et al., 2013. On the relationships between forest fires and weather conditions in Greece from long-term national observations (1894-2010). International Journal of Wildland Fire, 22(4): 493–507. doi: 10.1071/WF12003

  41. Littell J S, Peterson D L, Riley K L et al., 2016. A review of the relationships between drought and forest fire in the United States. Global Change Biology, 22(7): 2353–2369. doi: 10.1111/gcb.13275

  42. Liu Z H, Yang J, Chang Y et al., 2012. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Global Change Biology, 18(6): 2041–2056. doi: 10.1111/j.1365-2486.2012.02649.x

  43. Manzo-Delgado L, Aguirre-Gómez R, Álvarez R, 2004. Multitemporal analysis of land surface temperature using NOAA-AVHRR: preliminary relationships between climatic anomalies and forest fires. International Journal of Remote Sensing, 25(20): 4417–4423. doi: 10.1080/01431160412331 269643

  44. Manzo-Delgado L, Sánchez-Colón S, Álvarez R, 2009. Assessment of seasonal forest fire risk using NOAA-AVHRR: a case study in central Mexico. International Journal of Remote Sensing, 30(19): 4991–5013. doi: 10.1080/01431160902852796

  45. Méndez González J, Návar Cháidez J J, González Rodríguez H G et al., 2007. Teleconexiones del fenómeno ENSO a la precipitación mensual en México. Ciencia UANL, 10(3): 290–298.

  46. Minnich R A, Franco-Vizcaíno E, 1997. La protección de la vegetación y los regimenes de incendios de la Sierra de San Pedro Mártir en Baja California. Fremontia, 25(3): 3–12. (in Spanish)

  47. Moreira F, Viedma O, Arianoutsou M et al., 2011. Landscape-wildfire interactions in Southern Europe: implications for landscape management. Journal of Environmental Management, 92(10): 2389–2402. doi: 10.1016/j.jenvman.2011. 06.028

  48. Moritz M A, Batllori E, Bradstock R A et al., 2014. Learning to coexist with wildfire. Nature, 515(7525): 58–66. doi: 10.1038/ nature13946

  49. Myers R L, 2006. Convivir con el Fuego-Manteniendo los Ecosistemas y Los Medios de Subsistencia Mediante el Manejo Integral del Fuego. Florida: The Nature Conservancy, 28. (in Spanish)

  50. Návar J, Lizárraga-Mendiola L, 2013. Hydro-climatic variability and forest fires in Mexico's northern temperate forests. Geofísica Internacional, 52(1): 5–20. doi: 10.1016/S0016-7169(13)71458-2

  51. Ord J K, Getis A, 1995. Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 27(4): 286–306. doi: 10.1111/j.1538-4632.1995.tb00912.x

  52. Parisien M A, Peters V S, Wang Y H et al., 2006. Spatial patterns of forest fires in Canada, 1980-1999. International Journal of Wildland Fire, 15(3): 361–374. doi: 10.1071/WF06009

  53. Podur J, Martell D L, Csillag F, 2003. Spatial patterns of lightning-caused forest fires in Ontario, 1976-1998. Ecological Modelling, 164: 1–20. doi: 10.1016/S0304-3800(02)00386-1

  54. Preisler H K, Brillinger D R, Burgan R E et al., 2004. Probability based models for estimation of wildfire risk. International Journal of Wildland Fire, 13: 133–142. doi: 10.1071/WF 02061

  55. Preisler H K, Westerling A L, 2007. Statistical model for forecasting monthly large wildfire events in western United States. Journal of Applied Meteorology and Climatology, 46(7): 1020–1030. doi: 10.1175/JAM2513.1

  56. Prestemon J P, Butry D T, 2005. Time to burn: modeling wildland arson as an autoregressive crime function. American Journal of Agricultural Economics, 87(3): 756–770. doi: 10.1111/j. 1467-8276.2005.00760.x

  57. Ray A J, Garfin G M, Wilder M et al., 2007. Applications of monsoon research: opportunities to inform decision making and reduce regional vulnerability. Journal of Climate, 20(9): 1608–1627. doi: 10.1175/JCLI4098.1

  58. Riley K L, Abatzoglou J T, Grenfell I C et al., 2013. The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984-2008: the role of temporal scale. International Journal of Wildland Fire, 22(7): 894–909. doi: 10.1071/WF12149

  59. Rivera-Huerta H, Safford H D, Miller J D, 2016. Patterns and trends in burned area and fire severity from 1984 to 2010 in the Sierra de San Pedro Mártir, Baja California, Mexico. Fire Ecology, 12(1): 52–72. doi: 10.4996/fireecology.1201052

  60. Rocca M E, Brown P M, MacDonald L H et al., 2014. Climate change impacts on fire regimes and key ecosystem services in Rocky Mountain forests. Forest Ecology and Management, 327: 290–305. doi: 10.1016/j.foreco.2014.04.005

  61. Rodríguez-Trejo D A, Fulé P Z, 2003. Fire ecology of Mexican pines and fire management proposal. International Journal of Wildland Fire, 12(1): 23–37. doi: 10.1071/WF02040

  62. Rodríguez-Trejo D A, 2008. Fire regimes, fire ecology and fire management in Mexico. Ambio: A Journal of the Human Environment, 37(7): 548–556. doi: 10.1579/0044-7447-37.7.548 Rodríguez

  63. Trejo D A, 2015. Incendios de Vegetación: Su Ecología, Manejo e Historia. México: Colegio de Post Graduados, 814. (in Spanish)

  64. Román-Cuesta R M, Gracia M, Retana J, 2003. Environmental and human factors influencing fire trends in ENSO and non-ENSO years in tropical Mexico. Ecological Applications, 13(4): 1177–1192. doi: 10.1890/1051-0761(2003)13[1177: EAHFIF]2.0.CO;2

  65. SAS Institute, 2005. Version 9.1 SAS User's Guide: Statistics. Cary, North Carolina, USA: SAS Institute.

  66. Seager R, Ting M F, Held I et al., 2007. Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316(5828): 1181–1184. doi: 10.1126/science.1139601

  67. Seager R, Ting M, Davis M et al., 2009. Mexican drought: an observational modeling and tree ring study of variability and climate change. Atmósfera, 22(1): 1–31.

  68. Skinner C N, Burk J J, Barbour M G et al., 2008. Influences of climate on fire regimes in montane forests of north-western Mexico. Journal of Biogeography, 35(8): 1436–1451. doi: 10.1111/j.1365-2699.2008.01893.x

  69. Trouet V, Taylor A H, Wahl E R et al., 2010. Fire-climate interactions in the American West since 1400 CE. Geophysical Research Letters, 37(4): L04702. doi: 10.1029/2009GL041695

  70. Vadrevu K P, Csiszar I, Ellicott E et al., 2013. Hotspot analysis of vegetation fires and intensity in the Indian region. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(1): 224–238. doi: 10.1109/JSTARS.2012. 2210699 Van

  71. Wagner C E, 1988. The historical pattern of annual burned area in Canada. The Forestry Chronicle, 64(3): 182–185. doi: 10.5558/tfc64182-3

  72. Vázquez A, Moreno J M, 2001. Spatial distribution of forest fires in Sierra de Gredos (Central Spain). Forest Ecology and Managemen, 147(1): 55–65. doi: 10.1016/S0378-1127(00) 00436-9

  73. Vicente-Serrano S M, Beguería S, López-Moreno J I, 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate, 23(7): 1696–1718. doi: 10.1175/2009JCLI2909.1

  74. Vicente-Serrano S M, Gouveia C, Camarero J J et al., 2013. Response of vegetation to drought time-scales across global land biomes. Proceedings of the National Academy of Sciences of the United States of America, 110(1): 52–57. doi: 10.1073/ pnas.1207068110

  75. Wang Y H, Anderson K R, 2010. An evaluation of spatial and temporal patterns of lightning-and human-caused forest fires in Alberta, Canada, 1980-2007. International Journal of Wildland Fire, 19(8): 1059–1072. doi: 10.1071/WF09085

  76. Westerling A L, Swetnam T W, 2003. Interannual to decadal drought and wildfire in the western United States. EOS, 84(49): 545–555. doi: 10.1029/2003EO490001

  77. Westerling A L, 2008. Climatology for wildfire management. In: Holmes T P, Prestemon J P, Abt K L (eds). The Economics of Forest Disturbances: Wildfires, Storms, and Invasive Species. Dordrecht: Springer, 107–122. doi: 10.1007/978-1-4020-4370-3_6

  78. Williams A A J, Karoly D J, Tapper N, 2001. The sensitivity of Australian fire danger to climate change. Climatic Change, 49(1–2): 171–191. doi: 10.1023/A:1010706116176

  79. Williams A P, Allen C D, Macalady A K et al., 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change, 3(3): 292–297. doi: 10. 1038/NCLIMATE1693

  80. Wotton B M, Martell D L, Logan K A, 2003. Climate change and people-caused forest fire occurrence in Ontario. Climatic Change, 60(3): 275–295. doi: 10.1023/A:1026075919710

  81. Wu Z W, He H S, Yang J et al., 2014. Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China. Science of the Total Environment, 493: 472–480. doi: 10.1016/j.scitotenv.2014.06.011

  82. Yang J, He H S, Shifley S R, 2008. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands. Ecological Applications, 18(5): 1212–1225. doi: 10.1890/07-0825.1

  83. Yocom L L, Fulé P Z, Brown P M et al., 2010. El Niño-Southern Oscillation effect on a fire regime in northeastern Mexico has changed over time. Ecology, 91(6): 1660–1671. doi: 10.1890/ 09-0845.1

  84. Yocom L L, Fulé P Z, 2012. Human and climate influences on frequent fire in a high-elevation tropical forest. Journal of Applied Ecology, 49(6): 1356–1364. doi: 10.1111/j.1365-2664. 2012.02216.x

  85. Zhang Songlin, Zhang Kun, 2007. Comparison between general Moran’s Index and Getis-Ordgeneral G of spatial autocorrelation. Acta Scientiarum Naturalium Universitatis Sunyatseni, 46(4): 93–97. (in Chinese)

Download references


We recognize CONAFOR for gathering and sharing data on records of forest fires across Mexico. We acknowledge the financial support given by CONACYT and UJED. JM Zúñiga helped by commenting a previous version of this manuscript.

Author information

Correspondence to Pompa-García Marín.

Additional information

Foundation item: Under the auspices of Universidad Juárez del Estado de Durango, Project PRODEP 2017 (No. 120418)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marín, P., Julio, C.J., Dante Arturo, R. et al. Drought and Spatiotemporal Variability of Forest Fires Across Mexico. Chin. Geogr. Sci. 28, 25–37 (2018).

Download citation


  • cluster
  • drought
  • forest fires
  • geostatistics
  • spatial clusters
  • Standardised Precipitation-Evapotranspiration Index (SPEI)