Chinese Geographical Science

, Volume 23, Issue 1, pp 1–12 | Cite as

Abrupt climate changes of Holocene

  • Shaowu Wang
  • Quansheng Ge
  • Fang WangEmail author
  • Xinyu Wen
  • Jianbin Huang


This paper is a review of studies of abrupt climate changes (ACCs) during the Holocene published during the past ten years. North Atlantic cold events are indicators of ACCs. As indicated by North Atlantic ice-rafted debris (IRD), there were nine confirmed cold events during the Holocene, occurring at 11.1 kyr, 10.3 kyr, 9.4 kyr, 8.1 kyr, 5.9 kyr, 4.2 kyr, 2.8 kyr, 1.4 kyr, and 0.4 kyr respectively according to most representative results from Bond et al. (1997). However, the identification of chronology has been made with some uncertainties. Considerable climatic proxy data have shown that, during the cold events, substantial climate abnormalities have occurred widely across the globe, particularly in the areas surrounding the North Atlantic. These abnormalities were in the form of high-latitude cold in the both hemispheres, expansion of the Westerlies to low latitudes, drought in the monsoon regions, recession of summer monsoons, and intensification of the winter monsoons. Studies have indicated that the four ACCs occurring in the early Holocene may be related to freshwater pulses from ice melting in the northern part of the North Atlantic, and the other five ACCs that occurred during the middle and late Holocene may be related to the decreased solar activity.


Holocene abrupt climate change cold event North Atlantic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alley R B, Ágústsdóttir A M, 2005. The 8k event: Cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews, 24(10–11): 1123–1149. doi: 10.1016/j.quascirev.2004.12.004CrossRefGoogle Scholar
  2. Alley R B, Clark P U, 1999. The deglaciation of the northern hemispheres global perspective. Annual Review of Earth and Planetary Sciences, 27(1): 149–182. doi: 10.1146/annurev. earth.27.1.149CrossRefGoogle Scholar
  3. Alley R B, Mayewski P A, Sowers T et al., 1999. Holocene climatic instability: A prominent, widespread event 8200 yr ago. Geology, 25(6): 463–486. doi: 10.1130/0091-7613(1997)Google Scholar
  4. An C B, Zhao J J, Tao S C et al., 2011. Dust variation recorded by lacustrine sediments from arid central Asia since ∼15 cal ka BP and its implication for atmospheric circulation. Quaternary Research, 75(3): 566–573. doi: 10.1016/j.yqres.2010.12.015CrossRefGoogle Scholar
  5. Andrews J T, Smith L M, Preston S R et al., 1997. Spatial and temporal patterns of iceberg rafting (IRD) along the last Greenland margin, ca. 68 N, over the last 14 cal. ka. Journal of Quaternary Science, 12(1): 1–13. doi: 10.1002/(SICI)1099-1417(199701/02)CrossRefGoogle Scholar
  6. Barber D C, Dyke A, Hillaire-Marcel et al., 1999. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature, 400: 344–348. doi: 10.1038/22504CrossRefGoogle Scholar
  7. Bianchi G G, McCave I N, 1999. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland. Nature, 397(6719): 515–517. doi: 10.1038/17362CrossRefGoogle Scholar
  8. Bond G C, Showers W, Elliot M et al., 1999. The North Atlantic’s 1–2 kyr climate rhythm: relation to Heinrich events, Dansgaard/ Oeschger cycles and the Little Ice Age. Geophysical Monograph Series, 112(1): 35–58. doi: 10.1029/GM112p0035CrossRefGoogle Scholar
  9. Bond G, Kromer B, Beer J et al., 2001. Persistent solar influence on north Atlantic climate during the Holocene. Science, 294(5549): 2130–2135. doi: 10.1126/science.1065680CrossRefGoogle Scholar
  10. Bond G, Showers W, Cheseby M et al., 1997. A pervasive millennial-scale cycle in north Atlantic Holocene and glacial climates. Science, 278(5341): 1257–1266. doi: 10.1126/science.278.5341.1257CrossRefGoogle Scholar
  11. Burroughs W J, 2005. Climate Change in Prehistory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  12. Clark P U, Dyke A S, Shakun J D et al., 2009. The last glacial maximum. Science, 325(5941): 710–714. doi: 10.1126/science. 1172873CrossRefGoogle Scholar
  13. Dalfes H N, Kukla G, Weiss H et al., 1997. Third Millennium B C Climate Change and Old World Collapse. Heidelberg: Springer Verlag.CrossRefGoogle Scholar
  14. de Menocal P, Ortiz J, Guilderson J et al., 2000a. Abrupt onset and termination of the African Humid Period: Rapid climate responses to gradual insolation forcing. Quaternary Science Reviews, 19(1): 347–361. doi: 10.1016/S0277-3791(99)00081-5CrossRefGoogle Scholar
  15. de Menocal P, Ortiz J, Guilderson T et al., 2000b. Coherent high-and low-latitude climate variability during the Holocene warm period. Science, 208(5474): 2198–2202. doi: 10.1126/science.288.5474.2198CrossRefGoogle Scholar
  16. Deevey E S, Flint R F, 1957. Postglacial Hypsithermal interval. Science, 125(3240): 182–184. doi: 10.1126/science.125.3240.182CrossRefGoogle Scholar
  17. Denton G H, Anderson R F, Toggweiler J R et al., 2010. The last glacial termination. Science, 328(5986): 1652–1656. doi: 10.1126/science.184119CrossRefGoogle Scholar
  18. Gupta A K, Anderson D M, Overpeck J T, 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 421: 354–357. doi: 10.1038/nature01340CrossRefGoogle Scholar
  19. Hong Y T, Hong B, Lin Q H et al., 2003. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth and Planetary Science Letters, 211(3–4): 371–380. doi: 10.1016/S0012-821X(03)00207-3CrossRefGoogle Scholar
  20. Huang Chunchang, 1998. Environmental Variations. Beijing: Science Press. (in Chinese)Google Scholar
  21. Huang E, Tian J, Steinke S, 2011. Millennial-scale dynamics of the winter cold tongue in the southern South China Sea over the past 26ka and the East Asian winter monsoon. Quaternary Research, 76(1): 196–204. doi: 10.1016/j.yqres.2010.08.014CrossRefGoogle Scholar
  22. Jian Z M, Wang P X, Yoshiki S et al., 2000. Holocene variability of the Kuroshio Current in the Okinawa trough, north western Pacific Ocean. Earth and Planetary Science Letters, 184(1): 305–319. doi: 10.1016/S0012-821X(00)00321-6CrossRefGoogle Scholar
  23. Magny M, Haas J N, 2004. A major widespread climatic change around 5300 cal yr BP at the time of Alpine Iceman. Journal of Quaternary Science, 19(5): 423–430. doi: 10.1002/jqs.850CrossRefGoogle Scholar
  24. Magny M, Vannière B, de Beaulieu J L et al., 2007. Early-Holocene climate oscillations recorded by lake-level fluctuations in west-central Europe and in central Italy. Quaternary Science Reviews, 26(15–16): 1951–1964. doi: 10.1016/j.quascirev.2006.04.013CrossRefGoogle Scholar
  25. Martin-Puertas C, Matthes K, Brauer A et al., 2012. Regional atmospheric circulation shifts induced by a grand solar minimum. Nature Geoscience, 5(6): 397–401. doi: 10.1038/nego 1460CrossRefGoogle Scholar
  26. Mayewski P A, Rohling E E, Stager J C et al., 2004. Holocene climate variability. Quaternary Research, 62(3): 243–255. doi: 10.1016/j.yqres.2004.07.001CrossRefGoogle Scholar
  27. Moros M, Andrews J T, Eberl D D et al., 2006. Holocene history of drift ice in the northern Atlantic: Evidence for different spatial and temporal modes. Paleoceanography, 21(PA): 2017. doi: 10.1029/2005 PA001214Google Scholar
  28. Moros M, Emeis K C, Risebrobakken B et al., 2004. Sea surface temperatures and ice rafting in the Holocene north Atlantic: Climate influences on northern Europe and Greenland. Quaternary Science Reviews, 23(20): 2113–2126. doi: 10.1016/j.quascirev.2004.08.003CrossRefGoogle Scholar
  29. Overpeck J, Anderson D, Trumbore S et al., 1996. The Southwest Indian monsoon over the last 18000 years. Climate Dynamics, 12(3): 213–225. doi: 10.1007/003820050103CrossRefGoogle Scholar
  30. Petit R, Jonzel J, Raynaud D et al., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(6735): 429–436. doi: 10.1038/20859CrossRefGoogle Scholar
  31. Renssen H, Goosse H, Fichefet T et al., 2001. The 8.2 kyr BP event simulated by a global atomsphere-sea-ice-ocean model. Geophysical Research Letters, 28(8): 1567–1570. doi: 10.1029/2000GL012602CrossRefGoogle Scholar
  32. Renssen H, Goosse H, Fichefet T, 2002. Modeling the effect of freshwater pulses on the early Holocene climate: The influence of high-frequency climate variability. Paleoceanography, 17(2): 1020. doi: 10.1029/2001PA000649CrossRefGoogle Scholar
  33. Renssen H, Goosse H, Frichefet T, 2007. Simulation of Holocene cooling events in a coupled climate model. Quaternary Science Reviews, 26(15–16): 2019–2029. doi: 10.1016/j.quascirev.2007.07.011CrossRefGoogle Scholar
  34. Renssen H, Goosse H, Muscheler R, 2006. Coupled climate model simulation of Holocene cooling events: Solar forcing triggers oceanic feedback. Climate of the Past Discussions, 2(3): 209–232. doi: 10.5194/cpd-2-209-2006CrossRefGoogle Scholar
  35. Risebrobakken B, Jansen E, Andersson C et al., 2003. A high-resolution study of Holocene paleoclimatic and paleocenographic changes in the Nordic Seas. Paleoceanography, 18(1): 1017. doi: 10.1029/2002PA000764CrossRefGoogle Scholar
  36. Roberts N, 1989. The Holocene, An Environmental History. Oxford: Blackwell Ltd.Google Scholar
  37. Shakun J D, Carlson A E, 2010. A global perspective on Last Glacial Maximum to Holocene climate change. Quaternary Science Reviews, 29(15–16): 1801–1816. doi: 10.1016/j.quascirev.2010.03.016CrossRefGoogle Scholar
  38. Shen C C, Kano A, Hori M et al., 2010. East Asian monsoon evolution and reconciliation of climate records from Japan and Greenland during the last deglaciation. Quaternary Science Reviews, 29(23–24): 3327–3335. doi: 10.1016/j.quascirev.2010.08.012CrossRefGoogle Scholar
  39. Suznki H, 1979. 3500 years ago-climatic changes and ancient civilization. Bulletin of the Department of Geography, Univer sity of Tokyo, 11: 43–58.Google Scholar
  40. Teller J T, Leverington D W, Mann J D, 2002. Freshwater outbursts to the ocean from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quaternary Science Reviews, 21(8): 879–887. doi: 10.1016/S0277-3791(01) 00145-7CrossRefGoogle Scholar
  41. Wang L, Sarnthein M, Erlenkenser H et al., 1999. Holocene variations in Asian monsoon moisture: A bidecadal sediment record from the South China Sea. Geophyical Research Letters, 26(18): 2889–2892. doi: 10.1029/1999GL900443CrossRefGoogle Scholar
  42. Wang S W, Zhou T J, Cai J N et al., 2004. Abrupt climate change around 4 ka BP: Role of the thermohaline circulation as indicated by a GCM experiment. Advances in Atmospheric Sciences, 21(2): 291–295.CrossRefGoogle Scholar
  43. Wang Y, Cheng H, Edwards R L et al., 2005. The Holocene Asian Monsoon: Links to solar changes and North Atlantic climate. Science, 308(5723): 854–857. doi: 10.1126/science.1106296CrossRefGoogle Scholar
  44. Wanner H, Beer J, Bütikofer J, 2008. Mid-to Late Holocene climate change: An overview. Quaternary Science Reviews, 27(19–20): 1791–1828. doi: 10.1016/j.quascirev.2008.06.013CrossRefGoogle Scholar
  45. Wu Wenxiang, Liu Tongsheng, 2001. 4000aBP event and its implications for the origin of ancient Chinese civilization. Quaternary Sciences, 21(5): 443–451. (in Chinese)Google Scholar
  46. Wu W X, Liu T S, 2002. 5500aBP climate event and its implications for the emergence of civilizations in Egypt and Mesopotamia and Neolithic cultural development in China. Earth Science Frontiers, 9(1): 155–162.Google Scholar
  47. Xiao Shangbin, Li Anchun, Chen Muhong et al., 2005. Recent 8ka mud records of the East Asian Winter Monsoon from the Inner shelf of the East China Sea. Earth Science-Journal of China University of Geosciences, 30(5): 573–581. (in Chinese)Google Scholar
  48. Yu X F, Zhou W J, Lin Z et al., 2011. Different patterns of changes in the Asian summer and winter monsoons on the eastern Tibetan plateau during the Holocene. The Holocene, 21(7): 1031–1036. doi: 10.1177/0959683611400460CrossRefGoogle Scholar
  49. Zhou W J, Lu X F, Wu Z K et al., 2002. Peat record reflecting Holocene climatic change in the Zoigê plateau and AMS radiocarbon dating. Chinese Science Bulletin, 47(1): 66–70.CrossRefGoogle Scholar

Copyright information

© Science Press, Northeast Institute of Geography and Agricultural Ecology, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shaowu Wang
    • 1
    • 2
  • Quansheng Ge
    • 3
  • Fang Wang
    • 3
    Email author
  • Xinyu Wen
    • 1
  • Jianbin Huang
    • 2
  1. 1.Department of Atmospheric and Oceanic Sciences, School of PhysicsPeking UniversityBeijingChina
  2. 2.Center for Earth System ScienceTsinghua UniversityBeijingChina
  3. 3.Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations