Chinese Geographical Science

, Volume 22, Issue 4, pp 450–461 | Cite as

Holocene climate cycles in northwest margin of Asian monsoon

  • Yu Li
  • Nai’ang Wang
  • Zhuolun Li
  • Xuehua Zhou
  • Chengqi Zhang
Article
  • 107 Downloads

Abstract

In the mid-latitude regions of the Asian continent, Zhuye Lake is located in the northwest margin of the Asian monsoon, where the modern climate is affected by the Asian monsoon and Westerlies. In this study, we investigated the absolutely dated Holocene records in Zhuye Lake for detecting the Holocene climate cycles. Totally, 14 14C dates and 6 optically simulated luminescence (OSL) dates are obtained from the QTH01 and QTH02 sections. The proxies of grain-size, total organic carbon content (TOC), C/N and δ13C are used for wavelet analysis, and the results show obvious ∼256, ∼512 and ∼1024-year climate cycles, which are consistent with the Holocene millennial and centennial scale climate cycles in the typical Asian summer monsoon domain. In different parts of the Zhuye Lake, the Holocene sediments show variable climate cycles that are affected by the lake basin topography. In the Zhuye Lake, the Holocene climate cycles are mainly correlated with the solar-related Asian summer monsoon variability and the North Atlantic ice-rafting events.

Keywords

Holocene climate cycle Asian monsoon wavelet analysis Zhuye Lake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bond G, Showers W, Cheseby M et al., 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial Climates. Science, 278(5341): 1257–1266. doi: 10.1126/science.278.5341.1257CrossRefGoogle Scholar
  2. Bond G, Kromer B, Beer J et al., 2001. Persistent solar influence on North Atlantic Climate during the Holocene. Science, 294(5549): 2130–2136. doi: 10.1126/science.1065680CrossRefGoogle Scholar
  3. Chen Jingan, Wan Guojiang, Zhang Dian et al., 2003. Environmental records of different time scales in lake-sediments: Grain-size of sediments. Science in China (Series D), 33(6): 563–568. (in Chinese)Google Scholar
  4. Chen Longheng, Qu Yaoguang, 1992. Water-land Resources and Reasonable Development and Utilization in the Hexi Region. Beijing: Science Press. (in Chinese)Google Scholar
  5. Chen F, Zhu Y, Li J et al., 2001. Abrupt Holocene changes of the Asian monsoon at millennial- and centennial-scales: Evidence from lake sediment document in Minqin Basin, NW China. Chinese Science Bulletin, 46(23): 1942–1947. doi: 10.1360/03wd0245CrossRefGoogle Scholar
  6. Dansgaard W, Johnsen S J, Clausen H B et al., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364(6434): 218–220. doi: 10.1038/364218a0CrossRefGoogle Scholar
  7. Dean W E, 1999. The carbon cycle and biogeochemical dynamics in lake sediments. Journal of Paleolimnology, 21(4): 375–393. doi: 10.1023/A:1008066118210CrossRefGoogle Scholar
  8. Fleitmann D, Burns S J, Mudelsee M et al., 2003. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science, 300(5626): 1737–1739. doi: 10.1126/science.1083130CrossRefGoogle Scholar
  9. Feng S H, Kaufman D, Yoneji S et al., 2003. Cyclic variation and solar forcing of Holocene Climate in the Alaskan Subarctic. Science, 301(5641): 1890–1893. doi: 10.1126/science.1088568CrossRefGoogle Scholar
  10. Feng Shengwu, 1963. The evolution of the drainage system of the Minqin oasis. Acat Geographica Sinica, 29(3): 241–249. (in Chinese)Google Scholar
  11. Grootes P M, Stuiver M, White J W C et al., 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature, 366(6455): 552–554. doi: 10.1038/366552a0CrossRefGoogle Scholar
  12. Gupta A K, Anderson D M, Overpeck J T, 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 421(6921): 354–357. doi: 10.1038/nature01340CrossRefGoogle Scholar
  13. Hong Y T, Hong B, Lin Q H et al., 2003. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth Planet Science Letters, 211(3–4): 371–380. doi: 10.1016/S0012-821X(03)00207-3CrossRefGoogle Scholar
  14. Jin Liya, Chen Fahu, Zhu Yan, 2004. Holocene climatic periodicities recorded from lake sediments in the arid-semiarid areas of northwestern China. Marine Geology & Quaternary Geology, 24(2): 101–108. (in Chinese)Google Scholar
  15. Lai Z P, Wintle A G, 2006. Locating the boundary between the Pleistocene and the Holocene in Chinese loess using luminescence. The Holocene, 16(6): 893–899. doi: 10.1191/0959683606hol980rrCrossRefGoogle Scholar
  16. Lerman A, 1978. Lake: Chemistry, Geology, Physics. Berlin: Springer-Verlag.Google Scholar
  17. Li Bingcheng, 1993. A study on the Zhuye Lake and its historical evolution. Acta Geographica Sinica, 48(1): 55–60. (in Chinese)Google Scholar
  18. Li Y, Wang N, Cheng H et al., 2009a. Holocene environmental change in the marginal area of the Asian monsoon: A record from Zhuye Lake, NW China. Boreas, 38(2): 349–361. doi: 10.1111/j.1502-3885.2008.00063.xCrossRefGoogle Scholar
  19. Li Y, Wang N, Morrill C et al., 2009b. Environmental change implied by the relationship between pollen assemblages and grain-size in NW Chinese lake sediments since the Late Glacial. Review of Palaeobotany and Palynology, 154(1–4): 54–64. doi: 10.1016/j.revpalbo.2008.12.005CrossRefGoogle Scholar
  20. Li Y, Wang N, Li Z et al., 2011. Holocene palynological records and their responses to the controversies of climate system in the Shiyang River drainage basin. Chinese Science Bulletin, 56(6): 535–546. doi: 10.1007/s11434-010-4277-yCrossRefGoogle Scholar
  21. Liu J Q, Lu H Y, Negendank J et al., 2000. Periodicity of Holocene climatic variations in the Huguangyan Maar Lake. Chinese Science Bulletin, 45(18): 1712–1717. doi: 10.1007/s11434-009-0585-5CrossRefGoogle Scholar
  22. Long H, Lai Z, Wang N et al., 2010. Holocene climate variations from Zhuyeze terminal lake records in East Asian monsoon margin in aridnorthern China. Quaternary Research, 74(1): 46–56. doi: 10.1016/j.quageo.2009.05.005CrossRefGoogle Scholar
  23. Meyers P A, Lallier-Vergas E, 1999. Lacustrine sedimentary organic matter records of late Quaternary paleoclimates. Journal of Paleolimnology, 21(3): 345–372. doi: 10.1016/S0031-0182(02)00591-6CrossRefGoogle Scholar
  24. O’Leary M H, 1988. Carbon isotopes in photosynthesis. Bioscience, 38(5): 328–336. doi: 10.1029/96GB02345CrossRefGoogle Scholar
  25. Pachur H J, Wünnemann B, Zhang H, 1995. Lake evolution in the Tengger Desert, northwestern China, during the last 40 000 Years. Quaternary Research, 44(2): 171–180. doi: 10.1006/qres.1995.1061CrossRefGoogle Scholar
  26. Palus M, Kurths J, Schwarz U et al., 2007. The solar activity cycle is weakly synchronized with the solar inertial motion. Physics Letters A, 365(5–6): 421–428. doi: 10.1016/j.physleta.2007.01.039CrossRefGoogle Scholar
  27. Rahmstorf S, 2003. Timing of abrupt climate change: A precise clock. Geophysical Research Letter, 30(10): 1510. doi: 10.1029/2003GL017115CrossRefGoogle Scholar
  28. Reimer P J, Baillie M G L, Bard E et al., 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal. kyr BP. Radiocarbon, 46(3): 1029–1058. doi: 10.1016/S0025-3227(97)00107-2Google Scholar
  29. Sonett C P, Suess H E, 1984. Correlation of bristlecone pine ring width with atmospheric 14C variations. Nature, 307(5947): 141–142. doi: 10.1038/307141a0CrossRefGoogle Scholar
  30. Stuiver M, Braziunas T, 1993. Sun, ocean, climate and atmospheric 14CO2: An evaluation of causal and spectral relationships. The Holocene, 3(3): 289–305. doi: 10.1177/095968369300300401CrossRefGoogle Scholar
  31. Talbot M R, Laerdal T, 2000. The late Pleistocene-Holocene paleolimnology of Lake Victoria, East Africa, based upon elemental and isotopic analyses of sedimentary organic matter. Journal of Paleolimnology, 23(2): 141–164. doi: 10.1016/S0033-5894(03)00008-5CrossRefGoogle Scholar
  32. Torrence C, Compo G P, 1998. A practical guide to wavelet analysis. Bulletin of American Meteorological Society, 76(1): 61–78. doi: 10.1175/1520-0477CrossRefGoogle Scholar
  33. Xian Feng, Zhou Weijian, Yu Xuefeng et al., 2006. Evidence for abrupt changes of the Asian monsoon during the Holocene: From the peat records of Tibetan Plateau. Marine Geology & Quaternary Geology, 26(5): 41–45. (in Chinese)Google Scholar
  34. Wang Y, Cheng H, Edwards R L et al., 2005. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science, 308(5723): 854–857. doi: 10.1126/science.1106296CrossRefGoogle Scholar
  35. Yiou P, Fuhrer K, Meeker L D et al., 1997. Paleoclimate variabil ity inferred from the spectral analysis of Greenland and Antarctic ice-core data. Journal of Geophysical Research, 102(c12): 26441–26454. doi: 10.1029/97JC00158CrossRefGoogle Scholar
  36. Yu Y, Yang T, Li J et al., 2006. Millennial-scale Holocene climate variability in the NW China drylands and links to the tropical Pacific and the North Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 233(1–2): 149–162. doi: 10.1016/j.palaeo.2005.09.008CrossRefGoogle Scholar
  37. Zhang H C, Peng J L, Ma Y Z et al., 2004. Late Quaternary palaeolake levels in Tengger Desert, NW China. Palaeogeography, Palaeoclimatology, Palaeoecology, 211(1): 45–58. doi: 10.1016/j.palaeo.2004.04.006CrossRefGoogle Scholar

Copyright information

© Science Press, Northeast Institute of Geography and Agricultural Ecology, CAS and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yu Li
    • 1
  • Nai’ang Wang
    • 1
  • Zhuolun Li
    • 1
  • Xuehua Zhou
    • 1
  • Chengqi Zhang
    • 1
  1. 1.College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid RegionLanzhou UniversityLanzhouChina

Personalised recommendations