Skip to main content
Log in

A spatio-temporal data model for road network in data center based on incremental updating in vehicle navigation system

  • Published:
Chinese Geographical Science Aims and scope Submit manuscript

Abstract

The technique of incremental updating, which can better guarantee the real-time situation of navigational map, is the developing orientation of navigational road network updating. The data center of vehicle navigation system is in charge of storing incremental data, and the spatio-temporal data model for storing incremental data does affect the efficiency of the response of the data center to the requirements of incremental data from the vehicle terminal. According to the analysis on the shortcomings of several typical spatio-temporal data models used in the data center and based on the base map with overlay model, the reverse map with overlay model (RMOM) was put forward for the data center to make rapid response to incremental data request. RMOM supports the data center to store not only the current complete road network data, but also the overlays of incremental data from the time when each road network changed to the current moment. Moreover, the storage mechanism and index structure of the incremental data were designed, and the implementation algorithm of RMOM was developed. Taking navigational road network in Guangzhou City as an example, the simulation test was conducted to validate the efficiency of RMOM. Results show that the navigation database in the data center can response to the requirements of incremental data by only one query with RMOM, and costs less time. Compared with the base map with overlay model, the data center does not need to temporarily overlay incremental data with RMOM, so time-consuming of response is significantly reduced. RMOM greatly improves the efficiency of response and provides strong support for the real-time situation of navigational road network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong M P, 1988. Temporality in spatial database. In: Proceedings of GIS/LIS 88. Falls Church: American Society for Photogrammetry and Remote Sensing, 880–889.

    Google Scholar 

  • Bagui S, 2003. Achievements and weaknesses of object-oriented databases. Journal of Object Technology, 2(4): 29–41. doi: 10.5381/jot.2003.2.4.c2

    Article  Google Scholar 

  • Burnett G E, 2000. Usable vehicle navigation systems: Are we there yet? In: Vehicle Electronic Systems 2000—European Conference and Exhibition. Leatherhead, UK: ERA Technology Limited, 3.3.3–3.3.11.

    Google Scholar 

  • Burrough P A, Frank A U, 1995. Concepts and paradigms in spatial information: Are current geographical information systems truly generic? International Journal of Geographical Information System, 9(2): 101–116. doi: 10.1080/02693799508902028

    Article  Google Scholar 

  • Cao Zhiyue, Liu Yue, 2002. An object-oriented spatio-temporal data model. Acta Geodaetica et Cartographica Sinica, 31(1): 87–92. (in Chinese)

    Google Scholar 

  • Chen Jun, Jiang Jie, 2000. An event-based approach to spatio-temporal data modeling in land subdivision systems. Geoinformatica, 4(4): 387–402. doi: 10.1023/A: 1026565929263

    Article  Google Scholar 

  • Cheng T, Molenaar M, 1998. A process-oriented spatio-temporal data model to support physical environmental modeling. In: Poiker T K et al. (eds.). Proceedings of the 8th International Symposium on Spatial Data Handling. Vancouver: Taylor & Francis, 418–430.

    Google Scholar 

  • Chrisman N R, 1984. The role of quality information in the long-term functioning of a geographic information system. Cartographica, 21(3): 79–87. doi: 10.3138/7146-4332-6J78-0671

    Google Scholar 

  • Cooper A, Peled A, 2001. Incremental updating and versioning. In: The 20th International Cartographic Conference. Beijing: Cartographic Publication, 2806–2809.

    Google Scholar 

  • Egenhofer M J, 1993. What’s special about spatial? Database requirements for vehicle navigation in geographic space. In: Buneman P et al. (eds.). SIGMOD’ 93 Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. New York: Association for Computing Machinery, 398–402. doi: 10.1145/170036.170096

    Chapter  Google Scholar 

  • Egenhofer M J, Golledge R G, 1998. Spatial and Temporal Reasoning in Geographic Information Systems. New York: Oxford University Press, 10–43.

    Google Scholar 

  • Erwig M, Güting R H, Schneider M et al., 1999. Spatio-temporal data types: An approach to modeling and querying moving objects in databases. GeoInformatica, 3(3): 269–296.

    Article  Google Scholar 

  • French R L, 1997. Land vehicle navigation—A worldwide perspective. The Journal of Navigation, 50(3): 411–416. doi: 10. 1017/S0373463300019032

    Article  Google Scholar 

  • Frihida A, Marceau D J, Thériault M, 2002. Spatio-temporal object-oriented data model for disaggregate travel behavior. Transactions in GIS, 6(3): 277–294. doi: 10.1111/1467-9671. 00111

    Article  Google Scholar 

  • Gong Jianya, 1997. An object-oriented spatio-temporal data model in GIS. Acta Geodaetica et Cartographica Sinica, 26(4): 289–298. (in Chinese)

    Google Scholar 

  • Goodchild M F, 1992. Geographical information science. International Journal of Geographical Information Systems, 6(1): 31–45. doi: 10.1080/02693799208901893

    Article  Google Scholar 

  • Goodchild M F, 2000. GIS and transportation: status and challenges. GeoInformatica, 4(2): 127–139. doi: 10.1023/A:10098-67905167

    Article  Google Scholar 

  • Hägerstrand T, 1974. On socio-technical ecology and the study of innovations. Ethnologia Europaea, 7(1): 17–34.

    Google Scholar 

  • Herring J R, 1992. TIGRIS: A data model for an object-oriented geographic information system. Computers & Geosciences, 18(4): 443–452. doi: 10.1016/0098-3004(92)90074-2

    Article  Google Scholar 

  • Khoshafian S, 1990. Insight into object-oriented Databases. Information and Software Technology, 32(4): 274–289. doi: 10. 1016/0950-5849(90)90061-U

    Article  Google Scholar 

  • Kraak M J, 2003. The space-time cube revisited from a geovisualization perspective. In: Proceedings of the 21st International Cartographic Conference. Durban, South Africa: Document Transformation Technologies, 1988–1996.

    Google Scholar 

  • Langan G, 1993. Issues of implementing a spatiotemporal system. International Journal of Geographical Information Systems, 7(4): 305–314. doi: 10.1080/02693799308901963

    Article  Google Scholar 

  • Langran G, 1992. Time in Geographic Information Systems. London: Taylor & Francis, 27–43.

    Google Scholar 

  • Langran G, Chrisman N R, 1988. A framework for temporal geographic information. Cartographica, 25(3): 1–14. doi: 10.3138/K877-7273-2238-5Q6V

    Google Scholar 

  • Li Lianying, Li Qingquan, Zhao Weifeng et al., 2009. Research on incremental updating method of navigable electronic maps. Journal of Image and Graphics, 14(7): 1238–1244. (in Chinese)

    Google Scholar 

  • Li Qingquan, Zou Xiaoqing, Xie Zhiying, 2004. Progress and trend of research on GIS-T linear data model. Geography and Geo-Information Science, 20(3): 31–35. (in Chinese)

    Google Scholar 

  • Lin Guangfa, Feng Xuezhi, Wang Lei et al., 2002. An event-centric object oriented spatio-temporal data model. Acta Geodaetica et Cartographica Sinica, 3(1): 71–76. (in Chinese)

    Google Scholar 

  • Lin M Y, Lee S Y, 2004. Incremental update on sequential patterns in large databases by implicit merging and efficient counting. Information Systems, 29(5): 385–404. doi: 10.1016/S0306-4379(03)00036-X

    Article  Google Scholar 

  • Lin Yan, Liu Wanzeng, Chen Jun, 2009. Modeling spatial database incremental updating based on base state with amendments. In: Ge Shirong et al. (eds.). Procedia Earth and Planetary Science. Holland: Elsevier B V, 1173–1179. doi: 10.1016/j.proeps.2009.09.180

    Google Scholar 

  • Peuquet D J, 2001. Making space for time: Issues in space-time data representation. GeoInformatica, 5(1): 11–32. doi: 10.1109/DEXA.1999.795200

    Article  Google Scholar 

  • Peuquet D J, Duan N, 1995. An event-based spatio-temporal data model (ESTDM) for temporal analysis of geographical data. International Journal of Geographical Information Systems, 9(1): 7–24. doi: 10.1080/02693799508902022

    Article  Google Scholar 

  • Raper J, Livingstone D, 1995. Development of a geomorphological spatial model using object oriented design. International Journal of Geographical Information Systems, 9(4): 359–383. doi: 10.1080/02693799508902044

    Article  Google Scholar 

  • Rucker R, 1984. The Fourth Dimension: Toward a Geometry of Higher Reality. Boston: Houghton-Mifflin, 1–35.

    Google Scholar 

  • Usery E L, 1996. A feature-based geographic information system model. Photogrammetric Engineering and Remote Sensing, 62(7): 833–838.

    Google Scholar 

  • Wang Donggen, Cheng Tao, 2001. A spatio-temporal data model for activity-based transport demand modeling. International Journal of Geographical Information Science, 15(6): 561–585. doi: 10.1080/13658810110046934

    Article  Google Scholar 

  • Wang Hefeng, 2006. Spatio-temporal data model and TGIS. Geomatics and Spatial Information Technology, 29(4): 11–13. (in Chinese)

    Google Scholar 

  • Wood D, Fels J, 1986. Designs on signs / myth and meaning in maps. Cartographica, 23(3): 54–103. doi: 10.3138/R831-50R-3-7247-2124

    Google Scholar 

  • WorBoys M F, 1992. A model for spatio-temporal information. In: Bresnahan P et al. (eds.). Proceedings of the 5th International Symposiumon Spatial Data Handling. Charleston: IGU Commission of GIS, 602–611.

    Google Scholar 

  • Zhang Qiaoping, Couloigner I, 2004. A framework for road change detection and map updating. In: Proceedings of the XXth International Society for Photogrammetry and Remote Sensing. Istanbul: IAPRS, 35(part B2): 729–734.

    Google Scholar 

  • Zhou Xiaoguang, Chen Jun, Jiang Jie et al., 2004. Event-based incremental updating of spatio-temporal database. Journal of Central South University of Technology, 11(2): 192–198. doi: 10.1007/s11771-004-0040-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoli Liu.

Additional information

Foundation item: Under the auspices of National High Technology Research and Development Program of China (No. 2007AA12Z242)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Liu, Z., Zhang, S. et al. A spatio-temporal data model for road network in data center based on incremental updating in vehicle navigation system. Chin. Geogr. Sci. 21, 346–353 (2011). https://doi.org/10.1007/s11769-011-0446-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11769-011-0446-4

Keywords

Navigation