Chinese Geographical Science

, Volume 20, Issue 6, pp 513–521 | Cite as

Modeling all-sky global solar radiation using MODIS atmospheric products: A case study in Qinghai-Tibet Plateau

  • Hailong ZhangEmail author
  • Gaohuan Liu
  • Chong Huang


The surface solar radiation (SSR) is of great importance to bio-chemical cycle and life activities. However, it is impossible to observe SSR directly over large areas especially for rugged surfaces such as the Qinghai-Tibet Plateau. This paper presented an improved parameterized model for predicting all-sky global solar radiation on rugged surfaces using Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric products and Digital Elevation Model (DEM). The global solar radiation was validated using 11 observations within the plateau. The correlation coefficients of daily data vary between 0.67–0.86, while those of the averages of 10-day data are between 0.79–0.97. The model indicates that the attenuation of SSR is mainly caused by cloud under cloudy sky, and terrain is an important factor influencing SSR over rugged surfaces under clear sky. A positive relationship can also be inferred between the SSR and slope. Compared with horizontal surfaces, the south-facing slope receives more radiation, followed by the west- and east-facing slopes with less SSR, and the SSR of the north-facing slope is the least.


DEM all sky surface solar radiation MODIS Qinghai-Tibet Plateau 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen R G, Trezza R, Tasumi M, 2006. Analytical integrated functions for daily solar radiation on slopes. Agricultural and Forest Meteorology, 139(1–2): 55–73. DOI: 10.1016/j.agrfprmet.2006.05.012CrossRefGoogle Scholar
  2. Bai Jingyu, Xu Xiangde, 2004. Atmospheric hydrological budget with its effects over tibetan plateau. Journal of Geographical Sciences, 14(1): 81–86. DOI: 10.1007/BF02873094CrossRefGoogle Scholar
  3. Ertekin C, Evrendilek F, 2007. Spatio-temporal modeling of global solar radiation dynamics as a function of sunshine duration for Turkey. Agricultural and Forest Meteorology, 145(1–2): 36–47. DOI: 10.1016/j.agrformet.2007.04.004CrossRefGoogle Scholar
  4. Gueymard C A, 2003a. Direct solar transmittance and irradiance predictions with broadband models. Part I: Detailed theoretical performance assessment. Solar Energy, 74(5): 355–379. DOI: 10.1016/S0038-092X(03)00195-6CrossRefGoogle Scholar
  5. Gueymard C A, 2003b. Direct solar transmittance and irradiance predictions with broadband models. Part II: Validation with high-quality measurements. Solar Energy, 74(5): 381–395. DOI: 10.1016/S0038-092X(03)00196-8CrossRefGoogle Scholar
  6. Gueymard Christian, 1989. A two-band model for the calculation of clear sky solar irradiance, illuminance, and photosynthetically active radiation at the earth’s surface. Solar Energy, 43(5): 253–265. DOI: 10.1016/0038-092X(89)90113-8CrossRefGoogle Scholar
  7. Gueymard Christian A, 2008. REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation—Validation with a benchmark dataset. Solar Energy, 82(3): 272–285. DOI: 10.1016/j. solener.2007.04.008CrossRefGoogle Scholar
  8. Houborg R, Soegaard H, Emmerich W et al., 2007. Inferences of all-sky solar irradiance using terra and aqua MODIS satellite data. International Journal of Remote Sensing, 28(20): 4509–4535. DOI: 10.1080/01431160701241902CrossRefGoogle Scholar
  9. Lau K M, Kim M K, Kim K M, 2006. Asian summer monsoon anomalies induced by aerosol direct forcing: The role of the tibetan plateau. Climate Dynamics, 26(7–8): 855–864. DOI: 10.1007/s00382-006-0114-zCrossRefGoogle Scholar
  10. Li Chaoliu, Kang Shichang, 2006. Review of the studies on climate change since the last inter-glacial period on the Tibetan Plateau. Journal of Geographical Sciences, 16(3): 337–345. DOI: 10.1007/s11442-006-0309-6CrossRefGoogle Scholar
  11. Li Ren, Zhao Lin, Ding Yongjian et al., 2007. The features of each components in the surface heat balance equation over wudaoliang northern tibetan plateau. Journal of Mountain Science, 28(3): 241–247. (in Chinese)Google Scholar
  12. Liu D L, Scott B J, 2001. Estimation of solar radiation in Australia from rainfall and temperature observations. Agricultural and Forest Meteorology, 106(1): 41–59. DOI: 10.1016/S0168-1923(00)00173-8CrossRefGoogle Scholar
  13. Mubiru J, Banda E J K B, Ujanga D F et al., 2007. Assessing the performance of global solar radiation empirical formulations in kampala, uganda. Theoretical and Applied Climatology, 87(1–4): 179–184. DOI: 10.1007/s00704-005-0196-2CrossRefGoogle Scholar
  14. Shen Zhibao, 1987. The geographic distribution of the global radiation and the characteristics of its seasonal variation over the Qinghai-Xizang Plateau. Plateau Meteorology, 6(4): 326–334. (in Chinese)Google Scholar
  15. Stephens G L, 1978. Radiation profiles in extended water clouds. II: parameterization schemes. Journal of the Atmospheric Sciences, 35(11): 2123–2132. DOI: 10.1175/1520-0469(1978)03-5〈2123:RPIEWC〉2.0.CO;2CrossRefGoogle Scholar
  16. Stephens Graeme L, Ackerman Steven, Smith Eric A, 1984. A shortwave parameterization revised to improve cloud absorption. Journal of the Atmospheric Sciences, 41(4): 687–690. DOI: 10.1175/1520-0469(1984)041〈0687:ASPRTI〉2.0.CO;2CrossRefGoogle Scholar
  17. Van Laake P, Sanchez-Azofeifa G A, 2004. Simplified atmospheric radiative transfer modelling for estimating incident par using modis atmosphere products. Remote Sensing of Environment, 91(1): 98–113. DOI: 10.1016/j.rse.2004.03.002CrossRefGoogle Scholar
  18. Wang Quan, Tenhunen John, Schmidt Markus et al., 2006. Estimation of total, direct and diffuse par under clear skies in complex alpine terrain of the national park Berchtesgaden, Germany. Ecological Modelling, 196(1–2): 149–162. DOI: 10.1016/j.ecolmodel.2006.02.005CrossRefGoogle Scholar
  19. Winslow J C, Hunt E R, Piper S C, 2001. A globally applicable model of daily solar irradiance estimated from air temperature and precipitation data. Ecological Modelling, 143(3): 227–243. DOI: 10.1016/S0304-3800(01)00341-6CrossRefGoogle Scholar
  20. Wu Guoxiong, Liu Yimin, Liu Xin et al., 2005. How the heating over the Tibetan Plateau affects the asian climate in summer. Chinese Journal of Atmospheric Science, 29(1): 47–56. (in Chinese)Google Scholar
  21. Wyser K, O Hirok W, Gautier C et al., 2002. Remote sensing of surface solar irradiance with corrections for 3-D cloud effects. Remote Sensing of Environment, 80(2): 272–284. DOI: 10.1117/12.373064CrossRefGoogle Scholar
  22. Xu Weixin, Liu Xiaodong, 2007. Response of vegetation in the Qinghai-Tibet Plateau to global warming. Chinese Geographical Science, 17(2): 151–159. DOI: 10.1007/s11769-007-0151-5CrossRefGoogle Scholar
  23. Yang K, Huang G W, Tamai N, 2001. A hybrid model for estimating global solar radiation. Solar Energy, 70(1): 13–22. DOI: 10.1016/S0038-092X(00)00121-3CrossRefGoogle Scholar
  24. Yang K, Koike T, Ye B S, 2006. Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets. Agricultural and Forest Meteorology, 137(1–2): 43–55. DOI: 10.1016/j.agrformet.2006.02.001CrossRefGoogle Scholar
  25. Zelenka A, Perez R, Seals R et al., 1999. Effective accuracy of satellite-derived hourly irradiances. Theoretical and Applied Climatology, 62(3–4): 199–207. DOI: 10.1007/s007040050084CrossRefGoogle Scholar
  26. Zhang Yili, Li Bingyuan, Zheng Du, 2002. A discussion on the boundary and area of the Tibetan Plateau in China. Geographical Research, 21(1): 1–8. (in Chinese)Google Scholar

Copyright information

© Science Press, Northeast Institute of Geography and Agricultural Ecology, CAS and Springer Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina

Personalised recommendations