Control Theory and Technology

, Volume 15, Issue 3, pp 193–205 | Cite as

Pole placement approach to coherent passive reservoir engineering for storing quantum information

  • Thien Nguyen
  • Zibo Miao
  • Yu Pan
  • Nina Amini
  • Valery UgrinovskiiEmail author
  • Matthew R. James


Reservoir engineering is the term used in quantum control and information technologies to describe manipulating the environment within which an open quantum system operates. Reservoir engineering is essential in applications where storing quantum information is required. From the control theory perspective, a quantum system is capable of storing quantum information if it possesses a so-called decoherence free subsystem (DFS). This paper explores pole placement techniques to facilitate synthesis of decoherence free subsystems via coherent quantum feedback control. We discuss limitations of the conventional ‘open loop’ approach and propose a constructive feedback design methodology for decoherence free subsystem engineering. It captures a quite general dynamic coherent feedback structure which allows systems with decoherence free modes to be synthesized from components which do not have such modes.


Open quantum system decoherence free subsystem reservoir engineering coherent feedback control quantum control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. F. Poyatos, J. I. Cirac, P. Zoller. Quantum reservoir engineering with laser cooled trapped ions. Physical Review Letters, 1996, 77(23): 4728–4731.CrossRefGoogle Scholar
  2. [2]
    N. Yamamoto. Coherent versus measurement feedback: Linear systems theory for quantum information. Physical Review X, 2014, 4(4): DOI 10.1103/PhysRevX.4.041029.Google Scholar
  3. [3]
    M. R. James, J. E. Gough. Quantum dissipative systems and feedback control design by interconnection. IEEE Transactions on Automatic Control, 2010, 55(8): 1806–1821.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    J. E. Gough, G. Zhang. On realization theory of quantum linear systems. Automatica, 2015, 59: 139–151.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    H. I Nurdin, J. E. Gough. Modular quantum memories using passive linear optics and coherent feedback. Quantum Information & Computation, 2015, 15(11/12): 1017–1040.MathSciNetGoogle Scholar
  6. [6]
    Y. Pan, T. Nguyen, Z. Miao, et al. Coherent observer engineering for protecting quantum information. Proceedings of the 35th Chinese Control Conference, Chengdu: IEEE, 2016: 9139–9144.Google Scholar
  7. [7]
    T. Nguyen, Z. Miao, Y. Pan, et al. Pole placement approach to coherent passive reservoir engineering for storing quantum information. Proceedings of the American Control Conference, Seattle: IEEE, 2017: 234–239.Google Scholar
  8. [8]
    H.-P. Breuer, F. Petruccione. The Theory of Open Quantum Systems. Oxford: Oxford University Press, 2002.zbMATHGoogle Scholar
  9. [9]
    H. M. Wiseman, G. J. Milburn. Quantum Measurement and Control. Cambridge: Cambridge university press, 2009.CrossRefzbMATHGoogle Scholar
  10. [10]
    A. I. Maalouf, I. R. Petersen. Bounded real properties for a class of annihilation-operator linear quantum systems. IEEE Transactions on Automatic Control, 2011, 56(4): 786–801.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    G. Zhang, M. R. James. Direct and indirect couplings in coherent feedback control of linear quantum systems. IEEE Transactions on Automatic Control, 2011, 56(7): 1535–1550.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    F. Verstraete, M. M. Wolf, J. I. Cirac. Quantum computation and quantum-state engineering driven by dissipation. Nature Physics, 2009, 5(9): 633–636.CrossRefGoogle Scholar
  13. [13]
    H. Krauter, C. A. Muschik, K. Jensen, et al. Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Physical Review Letters, 2011, 107(8): DOI 10.1103/PhysRevLett.107.080503.Google Scholar
  14. [14]
    F. Ticozzi, L. Viola. Analysis and synthesis of attractive quantum markovian dynamics. Automatica, 2009, 45(9): 2002–2009.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    J. Cohen, M. Mirrahimi. Dissipation-induced continuous quantum error correction for superconducting circuits. Physical Review A, 2014, 90(6): DOI 10.1103/PhysRevA.90.062344.Google Scholar
  16. [16]
    Y. Pan, T. Nguyen. Stabilizing quantum states and automatic error correction by dissipation control. IEEE Transactions on Automatic Control, 2016: DOI 10.1109/TAC.2016.2622694.Google Scholar
  17. [17]
    C.-T. Chen. A generalization of the inertia theorem. SIAM Journal on Applied Mathematics, 1973, 25(2): 158–161.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    A. Ostrowski, H. Schneider. Some theorems on the inertia of general matrices. Journal of Mathematical analysis and applications, 1962, 4(1): 72–84.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Thien Nguyen
    • 1
  • Zibo Miao
    • 2
  • Yu Pan
    • 3
  • Nina Amini
    • 4
  • Valery Ugrinovskii
    • 5
    Email author
  • Matthew R. James
    • 1
  1. 1.ARC Centre for Quantum Computation and Communication Technology, Research School of EngineeringThe Australian National UniversityCanberraAustralia
  2. 2.QUANTIC labINRIA ParisParisFrance
  3. 3.Institute of Cyber-Systems and ControlZhejiang UniversityHangzhou ZhejiangChina
  4. 4.Laboratoire des signaux et systèmes (L2S), CentraleSupélecCNRSGif-Sur-YvetteFrance
  5. 5.School of Engineering and Information TechnologyUniversity of New South Wales at the Australian Defence Force AcademyCanberraAustralia

Personalised recommendations